<div class="csl-bib-body">
<div class="csl-entry">D Kovacs, D. G., De Clerck, E., & Verrelst, J. (2025). PyEOGPR: A Python package for vegetation trait mapping with Gaussian Process Regression on Earth observation cloud platforms. <i>Ecological Informatics</i>, <i>92</i>, Article 103497. https://doi.org/10.1016/j.ecoinf.2025.103497</div>
</div>
-
dc.identifier.issn
1574-9541
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/221119
-
dc.description.abstract
Developed to efficiently quantify vegetation traits from satellite Earth Observation (EO) data, the here presented PyEOGPR Python package makes trained probabilistic Gaussian Process Regression (GPR) models readily accessible within cloud-computing platforms like Google Earth Engine (GEE) and openEO. PyEOGPR provides a diversity of validated hybrid GPR models targeting common vegetation traits, as well as newer, more challenging ones such as canopy nitrogen content (CNC), applicable to Sentinel-2 (S2) and Sentinel-3 (S3) data. The package also enables users to incorporate newly trained GPR models for quantifying user-defined surface properties. A key advantage of GPR models is their provision of associated uncertainty estimates, significantly enhancing retrieval reliability. PyEOGPR streamlines large-scale vegetation analysis, facilitating quantitative map generation from local to global scales with customizable time windows, eliminating the need for local image downloads or processing. This paper outlines the complete processing pipeline and demonstrates the generation of landscape-scale maps of key vegetation traits using S2 (20 m resolution) data, and global trait maps using S3 data. PyEOGPR currently supports 27 generically applicable GPR models, aiding environmental monitoring and sustainable agroecological management, with minimal coding expertise required. This integration democratizes access to advanced GPR models within cloud environments, making spatial vegetation dynamics analyses accessible to a broader user base and improving the efficiency of EO data processing.
en
dc.language.iso
en
-
dc.publisher
ELSEVIER
-
dc.relation.ispartof
Ecological Informatics
-
dc.subject
Python package
en
dc.subject
Machine learning
en
dc.subject
Remote sensing
en
dc.subject
Vegetation trait retrieval
en
dc.subject
Google Earth Engine
en
dc.subject
openEO
en
dc.title
PyEOGPR: A Python package for vegetation trait mapping with Gaussian Process Regression on Earth observation cloud platforms
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Universitat de València, Spain
-
dc.contributor.affiliation
Universitat de València, Spain
-
dc.rights.holder
OA
-
dc.type.category
Original Research Article
-
tuw.container.volume
92
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
E4
-
tuw.researchTopic.name
Environmental Monitoring and Climate Adaptation
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Ecological Informatics
-
tuw.publication.orgunit
E120-08 - Forschungsbereich Klima- und Umweltfernerkundung
-
tuw.publisher.doi
10.1016/j.ecoinf.2025.103497
-
dc.date.onlinefirst
2025-10-31
-
dc.identifier.articleid
103497
-
dc.identifier.eissn
1878-0512
-
dc.description.numberOfPages
13
-
tuw.author.orcid
0009-0009-9264-2679
-
tuw.author.orcid
0000-0002-6313-2081
-
wb.sci
true
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch.oefos
1030
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.cerifentitytype
Publications
-
item.openairetype
research article
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
restricted
-
crisitem.author.dept
E120-08 - Forschungsbereich Klima- und Umweltfernerkundung