<div class="csl-bib-body">
<div class="csl-entry">Pfeiffer, P., Alfons, A., & Filzmoser, P. (2025). Efficient computation of sparse and robust maximum association estimators. <i>Computational Statistics & Data Analysis</i>, <i>207</i>, Article 108133. https://doi.org/10.1016/j.csda.2025.108133</div>
</div>
-
dc.identifier.issn
0167-9473
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/221294
-
dc.description.abstract
Robust statistical estimators offer resilience against outliers but are often computationally challenging, particularly in high-dimensional sparse settings. Modern optimization techniques are utilized for robust sparse association estimators without imposing constraints on the covariance structure. The approach splits the problem into a robust estimation phase, followed by optimization of a decoupled, biconvex problem to derive the sparse canonical vectors. An augmented Lagrangian algorithm, combined with a modified adaptive gradient descent method, induces sparsity through simultaneous updates of both canonical vectors. Results demonstrate improved precision over existing methods, with high-dimensional empirical examples illustrating the effectiveness of this approach. The methodology can also be extended to other robust sparse estimators.
en
dc.language.iso
en
-
dc.publisher
ELSEVIER
-
dc.relation.ispartof
Computational Statistics & Data Analysis
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Biconvex optimization
en
dc.subject
Penalized canonical correlation
en
dc.subject
Robust estimation
en
dc.subject
Sparse robust canonical correlation
en
dc.title
Efficient computation of sparse and robust maximum association estimators