<div class="csl-bib-body">
<div class="csl-entry">Wurzer, G., Ferschin, P., Erb Gavrilovici, I., Kovacs, B. I., Kovacic, I., Bindreiter, S., Rechberger, H., Rivic, S., Mattersberger, F., Rast, L., Kneidinger, P., Ragossnig, A., Maurer, O., & Wolfgang E. Lorenz. (2025). Predicting Material Composition of Walls and Floors using Machine Learning. In <i>4th Digital Geographies Conference : Artificial geographies: opening the black box for a new wave of critical thinking : November 3-4 2025 | IGOT – University of Lisbon, Portugal : Book of Abstracts</i> (pp. 23–23).</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/221560
-
dc.description.abstract
In the context of Urban Mining, it is essential to know the material composition of the building stock. In our project M-HUB (Data hub for the collection and viewing of material compositions of the building stock of the City of Vienna), we have thus worked on ways of learning material compositions from samples taken in buildings of various periods. We employ machine learning (e.g. random forests) to predict wall and floor compositions and use these in connection with the building footprint for extrapolation. As shown, our results closely match the ground truth (more than 80 percent accuracy, depending on building period). As a matter of fact, we can infer the material composition of the urban building stock even for buildings that have not been surveyed. Additionally, we also sample building elements (e.g. windows, doors) that can be reused or repurposed; we learn to predict the existence of such elements in the same fashion. As to the applicability of our data hub, we target real estate developers, municipalities and planners. The first ones need an estimation of how much material and what kind (contaminants!) one would incur in renovation and demolition; municipalities might be interested in the same information, but on an aggregate level. And lastly, architects might also want to incorporate “waste” material or elements into their design, so as to decrease their carbon footprint (e.g. by using old bricks, wooden beams or doors and windows).
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.subject
Machine Learning
en
dc.subject
Urban Mining
en
dc.subject
Material Compositions
en
dc.subject
Data Hub
en
dc.title
Predicting Material Composition of Walls and Floors using Machine Learning
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
materialnomaden gmbh
-
dc.contributor.affiliation
RM Umweltkonsulenten ZT GmbH
-
dc.contributor.affiliation
RM Umweltkonsulenten ZT GmbH
-
dc.description.startpage
23
-
dc.description.endpage
23
-
dc.relation.grantno
913478
-
dc.type.category
Abstract Book Contribution
-
tuw.booktitle
4th Digital Geographies Conference : Artificial geographies: opening the black box for a new wave of critical thinking : November 3-4 2025 | IGOT – University of Lisbon, Portugal : Book of Abstracts
-
tuw.project.title
m-hub: Datendrehscheibe für die Erhebung und Sichtung von Materialzusammensetzungen des Gebäudebestands der Stadt Wien
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.name
Beyond TUW-research focus
-
tuw.researchTopic.value
10
-
tuw.researchTopic.value
25
-
tuw.researchTopic.value
65
-
tuw.publication.orgunit
E259-01 - Forschungsbereich Digitale Architektur und Raumplanung
-
tuw.publication.orgunit
E210-01 - Forschungsbereich Integrale Planung und Industriebau
-
tuw.publication.orgunit
E280-04 - Forschungsbereich Örtliche Raumplanung
-
tuw.publication.orgunit
E226-02 - Forschungsbereich Abfallwirtschaft und Ressourcenmanagement