<div class="csl-bib-body">
<div class="csl-entry">Iglesias Vazquez, F., Konzett, S., Zseby, T., & Bifet, A. (2025). Stream Clustering Robust to Concept Drift. In <i>2025 International Joint Conference on Neural Networks (IJCNN)</i> (pp. 1–10). IEEE. https://doi.org/10.1109/IJCNN64981.2025.11227664</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/221626
-
dc.description.abstract
Data streams are everywhere in modern technologies, spanning from industrial process control to network traffic analysis. Stream clustering is required to describe data streams in real time and maintain accurate knowledge of their underlying structures. However, data streams frequently exhibit non-stationarity, changes in distributions, and the emergence of new classes. These alterations—commonly referred to as "concept drift"—severely disturb algorithms, resulting in inconsistent outcomes and models. We present SDOstreamclust, an incremental algorithm for stream clustering. It inherits the distinctive features of methods founded on Sparse Data Observers, i.e., lightweight, intuitive, self-adjusting, resistant to noise, capable of identifying non-convex clusters, and constructed upon robust parameters and interpretable models. We compare SDOstreamclust with established algorithms and evaluate them with a broad collection of datasets, both real and synthetic. SDOstreamclust shows outstanding performances, a major adaptability to concept drift, and a superior parameter stability and robustness. Often ignored in the evaluation of new methods, concept drift is a major challenge for next-generation algorithms, since it is inherent to evolving data and a main cause of degradation in machine learning. Hence, SDOstreamclust emerges as a major alternative for unsupervised streaming data analysis.
en
dc.language.iso
en
-
dc.subject
Concept Drift
en
dc.subject
Stream Clustering
en
dc.subject
Data Streams
en
dc.subject
Stream Analysis
en
dc.subject
Incremental Process
en
dc.title
Stream Clustering Robust to Concept Drift
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
University of Waikato, New Zealand
-
dc.relation.isbn
979-8-3315-1042-8
-
dc.relation.doi
10.1109/IJCNN64981.2025
-
dc.relation.issn
2161-4393
-
dc.description.startpage
1
-
dc.description.endpage
10
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2161-4407
-
tuw.booktitle
2025 International Joint Conference on Neural Networks (IJCNN)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
40
-
tuw.researchTopic.value
30
-
tuw.linking
https://doi.org/10.48436/xh0w2-q5x18
-
tuw.linking
https://github.com/CN-TU/pysdoclust-stream
-
tuw.linking
https://hub.docker.com/r/fiv5/sdostreamclust
-
tuw.publication.orgunit
E389-01 - Forschungsbereich Networks
-
tuw.publication.orgunit
E056-10 - Fachbereich SecInt-Secure and Intelligent Human-Centric Digital Technologies
-
tuw.publication.orgunit
E056-16 - Fachbereich SafeSeclab
-
tuw.publisher.doi
10.1109/IJCNN64981.2025.11227664
-
dc.description.numberOfPages
10
-
tuw.author.orcid
0000-0001-6081-969X
-
tuw.author.orcid
0000-0002-5391-467X
-
tuw.author.orcid
0000-0002-8339-7773
-
tuw.event.name
International Joint Conference on Neural Networks (IJCNN 2025)