<div class="csl-bib-body">
<div class="csl-entry">Adam, S., & Eiter, T. (2025). ASP-Driven Emergency Planning for Norm Violations in Reinforcement Learning. In Association for the Advancement of Artificial Intelligence (AAAI) (Ed.), <i>Proceedings of the 39th Annual AAAI Conference on Artificial Intelligence</i> (pp. 14772–14780). AAAI Press. https://doi.org/10.1609/aaai.v39i14.33619</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/221634
-
dc.description.abstract
Reinforcement learning (RL) is a widely used approach for training an agent to maximize rewards in a given environment. Action policies learned with this technique see a broad range of applications in practical areas like games, healthcare, robotics, or autonomous driving. However, enforcing ethical behavior or norms based on deontic constraints that the agent should adhere to during policy execution remains a complex challenge. Especially constraints that emerge after the training can necessitate to redo policy learning, which can be costly and, more critically, time consuming. To mitigate this problem, we present a framework for policy fixing in case of a norm violation, which allows the agent to stay operational. Based on answer set programming (ASP), emergency plans are generated that exclude or minimize cost of norm violations by future actions in a horizon of interest. By combining and developing optimization techniques, efficient policy fixing under real-time constraints can be achieved.
en
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.language.iso
en
-
dc.subject
Answer Set Programming
en
dc.subject
Logic Programming
en
dc.subject
Knowledge Representation and Reasoning
en
dc.title
ASP-Driven Emergency Planning for Norm Violations in Reinforcement Learning
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
978-1-57735-897-8
-
dc.relation.issn
2159-5399
-
dc.description.startpage
14772
-
dc.description.endpage
14780
-
dc.relation.grantno
ICT22-023
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2374-3468
-
tuw.booktitle
Proceedings of the 39th Annual AAAI Conference on Artificial Intelligence
-
tuw.container.volume
39
-
tuw.peerreviewed
true
-
tuw.relation.publisher
AAAI Press
-
tuw.relation.publisherplace
Washington DC
-
tuw.project.title
Training and Guiding AI Agents with Ethical Rules
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-03 - Forschungsbereich Knowledge Based Systems
-
tuw.publisher.doi
10.1609/aaai.v39i14.33619
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0001-6003-6345
-
tuw.event.name
39th Annual AAAI Conference on Artificial Intelligence
en
tuw.event.startdate
25-02-2025
-
tuw.event.enddate
04-03-2025
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Philadelphia
-
tuw.event.country
US
-
tuw.event.institution
Association for the Advancement of Artificial Intelligence
-
tuw.event.presenter
Adam, Sebastian
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
dc.contributor.editorgroup
Association for the Advancement of Artificial Intelligence (AAAI)
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
crisitem.author.dept
E192-03 - Forschungsbereich Knowledge Based Systems
-
crisitem.author.dept
E192 - Institut für Logic and Computation
-
crisitem.author.orcid
0000-0001-6003-6345
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.author.parentorg
E180 - Fakultät für Informatik
-
crisitem.project.funder
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds