<div class="csl-bib-body">
<div class="csl-entry">Burges, M., Ambrozio Dias, P., Woody, C., Walters, S., & Lunga, D. (2025). Interactive Rotated Object Detection for Novel Class Detection in Remotely Sensed Imagery. In <i>2025 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW)</i> (pp. 1129–1137). IEEE. https://doi.org/10.1109/WACVW65960.2025.00135</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/221675
-
dc.description.abstract
In this paper, we propose IRTR-DETR, an Interactive and Real-Time Rotated DEtection TRansformer that extends IRT-DETR to predict rotated bounding boxes. IRTR-DETR maintains the Human-In-The-Loop (HIL) workflow of IRTDETR but introduces rotation-aware heads for improved detection of objects with arbitrary orientations. Similarly to IRTDETR, IRTR-DETR can be trained with a small labeled sample set in an interactive setting, but we show that it can also be pretrained on related but not identical data-such as a building damage dataset-before being applied to tasks like identifying buildings under construction. We demonstrate the efficacy of our approach on the publicly available Tiny-DOTA and xBD dataset, as well as two study-cases on proprietary datasets of greenhouses and houses under construction (“waffle homes”). Detecting greenhouses is highly relevant in the context of damage assessment, while “waffle homes” aid understanding typical floorplans and building codes in different areas, both thereby supporting population modeling, emergency response, and policy planning. Our method outperforms the state of the art in interactive rotated object detection on the Tiny-DOTA dataset by 5.7 percent, and improves upon the non interactive RTDETR by 7.85 to 19.39 percent (depending on the number of provided samples) while maintaining its real-time efficiency.
en
dc.language.iso
en
-
dc.relation.ispartofseries
IEEE Winter Applications and Computer Vision Workshops (WACVW)
-
dc.subject
applications
en
dc.subject
interactive
en
dc.subject
object detection
en
dc.subject
remote sensing
en
dc.title
Interactive Rotated Object Detection for Novel Class Detection in Remotely Sensed Imagery
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Oak Ridge National Laboratory, United States of America (the)
-
dc.contributor.affiliation
Oak Ridge National Laboratory, United States of America (the)
-
dc.contributor.affiliation
Oak Ridge National Laboratory, United States of America (the)
-
dc.contributor.affiliation
Oak Ridge National Laboratory, United States of America (the)
-
dc.relation.isbn
979-8-3315-3662-6
-
dc.relation.issn
2572-4398
-
dc.description.startpage
1129
-
dc.description.endpage
1137
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2690-621X
-
tuw.booktitle
2025 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E193-01 - Forschungsbereich Computer Vision
-
tuw.publisher.doi
10.1109/WACVW65960.2025.00135
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0003-1269-0769
-
tuw.author.orcid
0000-0001-9427-7112
-
tuw.author.orcid
0000-0003-2365-1159
-
tuw.author.orcid
0000-0002-3318-8543
-
tuw.author.orcid
0000-0003-0054-1141
-
tuw.event.name
WACV 2025 - 2nd Workshop on Computer Vision for Earth Observation (CV4EO) Applications
en
tuw.event.startdate
28-02-2025
-
tuw.event.enddate
04-03-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Tucson, Arizona
-
tuw.event.country
US
-
tuw.event.presenter
Burges, Marvin
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
restricted
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.dept
Oak Ridge National Laboratory, United States of America (the)
-
crisitem.author.dept
Oak Ridge National Laboratory, United States of America (the)
-
crisitem.author.dept
Oak Ridge National Laboratory, United States of America (the)
-
crisitem.author.dept
Oak Ridge National Laboratory, United States of America (the)
-
crisitem.author.orcid
0000-0003-1269-0769
-
crisitem.author.orcid
0000-0001-9427-7112
-
crisitem.author.orcid
0000-0003-2365-1159
-
crisitem.author.orcid
0000-0002-3318-8543
-
crisitem.author.orcid
0000-0003-0054-1141
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology