<div class="csl-bib-body">
<div class="csl-entry">Burges, M., Zambanini, S., & Sablatnig, R. (2025). Interactive Object Detection for Tiny Objects in Large Remotely Sensed Images. In <i>2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)</i> (pp. 4704–4713). IEEE. https://doi.org/10.1109/WACV61041.2025.00461</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/221676
-
dc.description.abstract
This paper highlights the potential of a Human-In-the-Loop (HIL) in interactive object detection methods. Although automation in computer vision is advancing rapidly, certain critical tasks, such as detecting UneXploded Ordnance (UXO), space/marine debris, or the generation of new datasets, require 100% recall and near-perfect precision. These tasks are often performed manually since automatic methods do not achieve the necessary accuracy. However, interactive object detection frameworks can potentially enhance annotation speed while maintaining the recall and accuracy of manual annotation. We propose IRTDETR, an interactive and real-time object detection method for very large imagery to address this. Using either point or bounding box annotations provided by a HIL, it globally relates the full image with the annotator inputs via a cross-attention-like mechanism, employs an attention loss to maximize the classification score based on similarity, and reuses portions of the network outputs during iterative refinements to conserve resources. We conduct experiments on five different datasets (Tiny-DOTA, CHAI, AITOD, SarDET, and COCO) to verify the efficacy of our approach. Our method surpasses existing interactive annotation approaches, achieving a higher mean Average Precision (mAP) with the same number of clicks. Additionally, we validate the annotation efficiency of our method in a user study, demonstrating it is 2.46× quicker and asks for only 72% of the task load (NASA-TLX) compared to fully manual annotation.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.relation.ispartofseries
IEEE Workshop on Applications of Computer Vision (WACV)
-
dc.subject
interactive
en
dc.subject
object detection
en
dc.subject
remote sensing
en
dc.title
Interactive Object Detection for Tiny Objects in Large Remotely Sensed Images
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
979-8-3315-1083-1
-
dc.relation.doi
10.1109/WACV61041.2025
-
dc.relation.issn
2472-6737
-
dc.description.startpage
4704
-
dc.description.endpage
4713
-
dc.relation.grantno
880883
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2642-9381
-
tuw.booktitle
2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.project.title
Domain-adaptive Remote sensing Image Analysis with Human-in-the-loop
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E193-01 - Forschungsbereich Computer Vision
-
tuw.publication.orgunit
E056-12 - Fachbereich ENROL DP
-
tuw.publication.orgunit
E056-18 - Fachbereich Visual Analytics and Computer Vision Meet Cultural Heritage
-
tuw.publisher.doi
10.1109/WACV61041.2025.00461
-
dc.description.numberOfPages
10
-
tuw.author.orcid
0000-0003-1269-0769
-
tuw.author.orcid
0000-0002-3459-8122
-
tuw.author.orcid
0000-0003-4195-1593
-
tuw.event.name
2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2025)
en
tuw.event.startdate
26-02-2025
-
tuw.event.enddate
06-03-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Tucson, Arizona
-
tuw.event.country
US
-
tuw.event.presenter
Burges, Marvin
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
restricted
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.dept
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.orcid
0000-0003-1269-0769
-
crisitem.author.orcid
0000-0002-3459-8122
-
crisitem.author.orcid
0000-0003-4195-1593
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E180 - Fakultät für Informatik
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH