<div class="csl-bib-body">
<div class="csl-entry">Sterzinger, R., Koch, W., & Hoch, R. (2025). Exploring Machine Learning for Faster Mapping and Scheduling of Automotive Applications on ADAS Platforms. In M. A. Wani, P. Angelov, F. Luo, M. O. Wu Xintao, R.-E. Precup, R. Ramezani, & X. Gu (Eds.), <i>2024 International Conference on Machine Learning and Applications (ICMLA)</i> (pp. 851–855). IEEE. https://doi.org/10.1109/ICMLA61862.2024.00123</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/221681
-
dc.description.abstract
In this work, we address the challenge of efficient task mapping and scheduling in Advanced Driver Assistance Systems (ADAS), which are becoming increasingly complex. For this, we explore Mixed-Integer Programming (MIP) combined with Machine Learning (ML) techniques as an alternative to previous work using heuristic algorithms such as simulated annealing or genetic algorithms. Our key contributions include: A simplified MIP formulation of the problem with a novel load-balancing objective. Employing Bayesian optimization to expedite the solving process by finding a better MIP solver configuration, reducing worst-case solving time by 65%. ML-driven decision variable prediction via a Graph Convolutional Network, which is able to fix decision variables with an average precision of up to 77 %, allowing for better branching decisions during the solving process. Experimental results demonstrate the potential for faster solving times, highlighting the value of further integrating machine learning with MIP for advanced ADAS scheduling.
en
dc.language.iso
en
-
dc.relation.ispartofseries
International Conference on Machine Learning and Applications (ICMLA)
-
dc.subject
Automotive Applications
en
dc.subject
Bayesian Optimization
en
dc.subject
Machine Learning
en
dc.subject
Mixed-Integer Programming
en
dc.subject
Scheduling
en
dc.title
Exploring Machine Learning for Faster Mapping and Scheduling of Automotive Applications on ADAS Platforms
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
TU Wien, Austria
-
dc.relation.isbn
979-8-3503-7488-9
-
dc.relation.doi
10.1109/ICMLA61862.2024
-
dc.relation.issn
1946-0740
-
dc.description.startpage
851
-
dc.description.endpage
855
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1946-0759
-
tuw.booktitle
2024 International Conference on Machine Learning and Applications (ICMLA)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E193-01 - Forschungsbereich Computer Vision
-
tuw.publication.orgunit
E384 - Institut für Computertechnik
-
tuw.publisher.doi
10.1109/ICMLA61862.2024.00123
-
dc.description.numberOfPages
5
-
tuw.author.orcid
0009-0001-0029-8463
-
tuw.author.orcid
0000-0001-9473-4766
-
tuw.editor.orcid
0000-0002-4178-3588
-
tuw.editor.orcid
0000-0002-2060-7403
-
tuw.event.name
2024 International Conference on Machine Learning and Applications (ICMLA)
en
dc.description.sponsorshipexternal
FFG
-
dc.relation.grantnoexternal
887474
-
tuw.event.startdate
18-12-2024
-
tuw.event.enddate
20-12-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Miami, Florida
-
tuw.event.country
US
-
tuw.event.presenter
Sterzinger, Rafael
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
restricted
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.dept
TU Wien, Austria
-
crisitem.author.dept
E384-01 - Forschungsbereich Software-intensive Systems
-
crisitem.author.orcid
0009-0001-0029-8463
-
crisitem.author.orcid
0000-0001-9473-4766
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology