<div class="csl-bib-body">
<div class="csl-entry">Balabán, J., Ganian, R., & Rocton, M. (2025). Computing Twin-Width Parameterized by the Feedback Edge Number and Vertex Integrity. <i>SIAM Journal on Discrete Mathematics</i>, <i>39</i>(4), 2102–2141. https://doi.org/10.1137/24M1705329</div>
</div>
-
dc.identifier.issn
0895-4801
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/221766
-
dc.description.abstract
The problem of whether and how one can compute the twin-width of a graph—along with an accompanying contraction sequence—lies at the forefront of the area of algorithmic model theory. While significant effort has been aimed at obtaining a fixed-parameter approximation for the problem when parameterized by twin-width, here we approach the question from a different perspective and consider whether one can obtain (near-)optimal contraction sequences under larger runtime parameters. As our main contributions, we obtain fixed-parameter approximation algorithms for twin-width when the runtime parameter is either the vertex integrity or the feedback edge number of the input graph. For the latter parameter, we also obtain a linear kernel for the problem of either computing a 2-contraction sequence or determining that none exists. For both parameters, we also obtain asymptotically tight upper bounds on twin-width.
en
dc.language.iso
en
-
dc.publisher
SIAM PUBLICATIONS
-
dc.relation.ispartof
SIAM Journal on Discrete Mathematics
-
dc.subject
twin-width
en
dc.subject
parameterized complexity
en
dc.subject
kernelization
en
dc.subject
feedback edge number
en
dc.title
Computing Twin-Width Parameterized by the Feedback Edge Number and Vertex Integrity
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Masaryk University, Czechia
-
dc.description.startpage
2102
-
dc.description.endpage
2141
-
dc.type.category
Original Research Article
-
tuw.container.volume
39
-
tuw.container.issue
4
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
SIAM Journal on Discrete Mathematics
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publication.orgunit
E056-13 - Fachbereich LogiCS
-
tuw.publisher.doi
10.1137/24M1705329
-
dc.date.onlinefirst
2025-10-17
-
dc.identifier.eissn
1095-7146
-
dc.description.numberOfPages
40
-
tuw.author.orcid
0000-0002-7762-8045
-
tuw.author.orcid
0000-0002-7158-9022
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.cerifentitytype
Publications
-
item.openairetype
research article
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
crisitem.author.dept
Masaryk University
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity