<div class="csl-bib-body">
<div class="csl-entry">Davoli, E., & Happ, L. (2025). Two-scale density of almost smooth functions in sphere-valued Sobolev spaces: A high-contrast extension of the Bethuel–Zheng theory. <i>Advances in Calculus of Variations</i>, <i>18</i>(4), 1339–1359. https://doi.org/10.1515/acv-2024-0134</div>
</div>
-
dc.identifier.issn
1864-8258
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/221982
-
dc.description.abstract
In this paper we prove a strong two-scale approximation result for sphere-valued maps in the space 𝐿²(Ω;𝑊¹,²
0(𝑄0;𝕊²)) , where Ω⊂ℝ³ is an open domain and 𝑄₀⊂𝑄 an open subset of the unit cube 𝑄=(0,1)³ . The proof relies on a generalization of the seminal argument by F. Bethuel and X. M. Zheng to the two-scale setting. We then present an application to a variational problem in high-contrast micromagnetics.
en
dc.language.iso
en
-
dc.publisher
WALTER DE GRUYTER GMBH
-
dc.relation.ispartof
Advances in Calculus of Variations
-
dc.subject
two-scale density
en
dc.subject
sphere-valued Sobolev spaces
en
dc.subject
homogenization
en
dc.title
Two-scale density of almost smooth functions in sphere-valued Sobolev spaces: A high-contrast extension of the Bethuel–Zheng theory