<div class="csl-bib-body">
<div class="csl-entry">Hsu, Y.-S., & Labbé, C. (2026). Construction and spectrum of the AndersonHamiltonian with white noise potential on ℝ2 and ℝ3. <i>Probability and Mathematical Physics (PMP)</i>, <i>7</i>(1), 1–35. https://doi.org/10.2140/pmp.2026.7.1</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/221988
-
dc.description.abstract
We propose a simple construction of the Anderson Hamiltonian with white noise potential on R² and R³ based on the solution theory of the parabolic Anderson model. It relies on a theorem of Klein and Landau (1981) that associates a unique self-adjoint generator to a symmetric semigroup satisfying some mild assumptions. Then, we show that almost surely the spectrum of this random Schrödinger operator is R. To prove this result, we extend the method of Kotani (1985) to our setting of singular random operators.
en
dc.language.iso
en
-
dc.publisher
Mathematical Sciences Publishers (MSP)
-
dc.relation.ispartof
Probability and Mathematical Physics (PMP)
-
dc.subject
white noise
en
dc.subject
Anderson Hamiltonian
en
dc.subject
random Schrödinger operato
en
dc.subject
regularity structures
en
dc.subject
parabolic Anderson model
en
dc.subject
selfadjointness
en
dc.title
Construction and spectrum of the AndersonHamiltonian with white noise potential on ℝ2 and ℝ3