<div class="csl-bib-body">
<div class="csl-entry">Ahmad, S., Schneidergruber, T., Brandic, I., & Scholz, J. (2026). On-Device Federated Learning for Remote Alpine Livestock Monitoring. In W. E. Nagel, D. Goehringer, & P. C. Diniz (Eds.), <i>Euro-Par 2025: Parallel Processing : 31st European Conference on Parallel and Distributed Processing, Dresden, Germany, August 25–29, 2025, Proceedings, Part II</i> (pp. 365–379). Springer. https://doi.org/10.1007/978-3-031-99857-7_26</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/222114
-
dc.description.abstract
Alpine livestock monitoring is critical for ecological preservation and agricultural efficiency. However, existing solutions struggle with energy constraints, limited network availability, and intermittent connectivity in remote environments. To address this, we propose an on-device federated learning framework tailored for PV-powered IoT sensors to optimize energy-communication tradeoffs. Our approach introduces staleness-aware aggregation and solar-aware training scheduling to address intermittent connectivity and PV variability in remote alpine environments. Deployed on a real-world testbed with collar sensors, the framework achieves 92% accuracy in time-series location prediction and 89% F1-score in anomaly detection while using 68% less energy than centralized baselines.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
Edge Intelligence
en
dc.subject
Federated Learning
en
dc.subject
Livestock Monitoring
en
dc.subject
PV Sensors
en
dc.title
On-Device Federated Learning for Remote Alpine Livestock Monitoring
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
University of Salzburg, Austria
-
dc.contributor.affiliation
University of Salzburg, Austria
-
dc.contributor.editoraffiliation
Technische Universität Dresden, Germany
-
dc.contributor.editoraffiliation
Technische Universität Dresden, Germany
-
dc.contributor.editoraffiliation
Porto Editora (Portugal), Portugal
-
dc.relation.isbn
978-3-031-99857-7
-
dc.relation.doi
10.1007/978-3-031-99857-7
-
dc.relation.issn
0302-9743
-
dc.description.startpage
365
-
dc.description.endpage
379
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1611-3349
-
tuw.booktitle
Euro-Par 2025: Parallel Processing : 31st European Conference on Parallel and Distributed Processing, Dresden, Germany, August 25–29, 2025, Proceedings, Part II
-
tuw.container.volume
15901
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)