<div class="csl-bib-body">
<div class="csl-entry">Kappes, J., Geier, J., van Kempen, P., Mueller-Gritschneder, D., & Schlichtmann, U. (2025). Automated Graph-level Passes for TinyML Fault Tolerance. In <i>2025 International Joint Conference on Neural Networks (IJCNN)</i>. 2025 International Joint Conference on Neural Networks (IJCNN), Rome, Italy. IEEE. https://doi.org/10.1109/IJCNN64981.2025.11227379</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/222119
-
dc.description.abstract
Deploying Machine Learning (ML) applications on Microcontroller Unit (MCU)-type devices, known as TinyML, poses significant challenges due to constrained resources. Consequently, this restricts the integration of fault tolerance mechanisms. Many redundancy techniques consume substantial amounts of already limited resources. To address this, Algorithm-Based Fault Tolerance (ABFT) methods for ML workloads focus on resource-intensive neural network operators at the kernel-level. However, this abstraction level introduces challenges, as these operators are often encapsulated within vendor-specific proprietary libraries. This work introduces automated and universal graph-level Data Flow Graph (DFG) passes supporting common kernel-level ABFT methods, along with a sophisticated redundancy mechanism called Dual Module Redundancy Island (DMRland). These DFG passes are implemented in the Tensor Virtual Machine (TVM) compiler framework and evaluated on a CPU-only execution platform with the MLPerf™Tiny benchmark. Our experimental results demonstrate that the proposed approach achieves competitive fault resilience in comparison to kernel-level ABFT methods, resulting in a reduction by two orders of magnitude for misclassification with combined ABFT and DMRland methods. Further, the run-time overhead (RTO) remains, on average, 19% lower than for comparable kernel-based implementations.
en
dc.language.iso
en
-
dc.subject
Machine learning
en
dc.subject
Compilers
en
dc.subject
Fault tolerance
en
dc.subject
Fault injection
en
dc.title
Automated Graph-level Passes for TinyML Fault Tolerance
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Technical University of Munich, Germany
-
dc.contributor.affiliation
Technical University of Munich, Germany
-
dc.contributor.affiliation
Technical University of Munich, Germany
-
dc.relation.isbn
979-8-3315-1042-8
-
dc.relation.doi
10.1109/IJCNN64981.2025
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2025 International Joint Conference on Neural Networks (IJCNN)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-02 - Forschungsbereich Embedded Computing Systems
-
tuw.publisher.doi
10.1109/IJCNN64981.2025.11227379
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0003-0903-631X
-
tuw.event.name
2025 International Joint Conference on Neural Networks (IJCNN)
en
tuw.event.startdate
30-06-2025
-
tuw.event.enddate
05-07-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Rome
-
tuw.event.country
IT
-
tuw.event.presenter
Kappes, Johannes
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
50
-
wb.sciencebranch.value
40
-
wb.sciencebranch.value
10
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems
-
crisitem.author.dept
Technical University of Munich, Germany
-
crisitem.author.dept
Technical University of Munich, Germany
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems