<div class="csl-bib-body">
<div class="csl-entry">Phan, T.-L., González Laffitte, M. E., Weinbauer, K., Merkle, D., Andersen, J. L., Fagerberg, R., Gatter, T., & Stadler, P. F. (2025). SynKit: A Graph-Based Python Framework for Rule-Based Reaction Modeling and Analysis. <i>Journal of Chemical Information and Modeling</i>. https://doi.org/10.1021/acs.jcim.5c02123</div>
</div>
-
dc.identifier.issn
1549-9596
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/222182
-
dc.description.abstract
Computational modeling of chemical reactions is fundamental to modern synthetic chemistry but is often hindered by a fragmented software ecosystem and the complexity of accurately representing the reaction mechanisms. To address this, we introduce SynKit, an open-source Python library that provides a unified, chemically intuitive framework for reaction informatics. SynKit performs core tasks such as reaction canonicalization and transformation classification, while other functionalities─such as synthetic route construction through rule composition─are supported through integration with external libraries. The newly introduced Mechanistic Transition Graph extends the traditional net-change representation of the Imaginary Transition State by explicitly modeling the sequence of bond-forming and bond-breaking events, capturing transient intermediates, and providing deeper mechanistic insight. Designed for easy installation and broad compatibility, SynKit integrates smoothly into existing computational workflows for exploring complex Chemical Reaction Networks. For more advanced network analyses, it interfaces with specialized tools (e.g., MØD) to support exhaustive mechanism enumeration and kinetics-aware studies. By combining advanced mechanistic modeling with an accessible, modular design, SynKit supports more reproducible and rigorous research in automated synthesis planning.
en
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.publisher
AMER CHEMICAL SOC
-
dc.relation.ispartof
Journal of Chemical Information and Modeling
-
dc.subject
Chemical Reactions
en
dc.subject
Extraction
en
dc.subject
Genetics
en
dc.subject
Mathematical Methods
en
dc.subject
Software
en
dc.title
SynKit: A Graph-Based Python Framework for Rule-Based Reaction Modeling and Analysis
en
dc.type
Article
en
dc.type
Artikel
de
dc.identifier.pmid
41337644
-
dc.contributor.affiliation
Leipzig University, Germany
-
dc.contributor.affiliation
Institut für Informatik - Leipzig University (Leipzig, DE)
-
dc.contributor.affiliation
University of Southern Denmark, Denmark
-
dc.contributor.affiliation
University of Southern Denmark, Denmark
-
dc.contributor.affiliation
University of Southern Denmark, Denmark
-
dc.contributor.affiliation
Leipzig University, Germany
-
dc.contributor.affiliation
Leipzig University, Germany
-
dc.relation.grantno
Proposal number: 101072930
-
dc.type.category
Original Research Article
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.project.title
Training Alliance for Computational Systems chemistry
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
10
-
tuw.researchTopic.value
70
-
tuw.researchTopic.value
20
-
dcterms.isPartOf.title
Journal of Chemical Information and Modeling
-
tuw.publication.orgunit
E194-06 - Forschungsbereich Machine Learning
-
tuw.publisher.doi
10.1021/acs.jcim.5c02123
-
dc.date.onlinefirst
2025-12-03
-
dc.identifier.eissn
1549-960X
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0000-0002-3532-2064
-
tuw.author.orcid
0009-0008-2307-595X
-
tuw.author.orcid
0000-0002-3349-9157
-
tuw.author.orcid
0000-0001-7792-375X
-
tuw.author.orcid
0000-0002-4165-3732
-
tuw.author.orcid
0000-0003-1004-3314
-
tuw.author.orcid
0000-0001-5567-3016
-
tuw.author.orcid
0000-0002-5016-5191
-
wb.sci
true
-
wb.sciencebranch
Chemie
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1040
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
20
-
wb.sciencebranch.value
80
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.grantfulltext
none
-
item.openairetype
research article
-
item.languageiso639-1
en
-
crisitem.author.dept
Leipzig University
-
crisitem.author.dept
Institut für Informatik - Leipzig University (Leipzig, DE)
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.dept
University of Southern Denmark
-
crisitem.author.dept
University of Southern Denmark
-
crisitem.author.dept
University of Southern Denmark
-
crisitem.author.dept
Leipzig University
-
crisitem.author.dept
Leipzig University
-
crisitem.author.orcid
0000-0002-3532-2064
-
crisitem.author.orcid
0009-0008-2307-595X
-
crisitem.author.orcid
0000-0002-3349-9157
-
crisitem.author.orcid
0000-0001-7792-375X
-
crisitem.author.orcid
0000-0002-4165-3732
-
crisitem.author.orcid
0000-0003-1004-3314
-
crisitem.author.orcid
0000-0001-5567-3016
-
crisitem.author.orcid
0000-0002-5016-5191
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering