<div class="csl-bib-body">
<div class="csl-entry">Ehlers, H. (2025). <i>Inspired by Biology: Towards Visualizing Complex Networks</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2025.137816</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2025.137816
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/222196
-
dc.description
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft
-
dc.description.abstract
The term “biological network” comprises a large and multifaceted set of different types of networks. These different network types bring with it unique visualization and visual analysis challenges. We first survey the literature in order to characterize and identify outstanding gaps in the visualization of biological networks. Inspired by these many challenges and difficulties faced by the field. Specifically, we focus on three challenges of particular interest to us: i) improving the visual quality of commonly employed straight-line node-link diagrams, ii) the visualization of uncertainty in networks, and iii) the visualization of group structures in compound graphs. To tackle these three challenges, we conduct five investigations.To tackle challenge 1, we first investigate the principled and algorithmic splitting of vertices to iteratively resolve edge crossings and thereby improve the readability of graphs. As an alternative solution to challenge 1, we investigate the visualization of so-called ego-networks, which allow for the visualization of only node-relative and node-relevant topology, instead of the entirety of a network. Third, within the context of challenge 2, we investigate the visualization of node attribute uncertainty using animated “wiggliness”, i.e., animated node motion. Fourth, in order to tackle challenge 3, we survey the current state of compound graph visualization and, finally, we combine the aforementioned four works together and develop a prototypical dashboard for the visualization of compound graphs.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Network visualization
en
dc.title
Inspired by Biology: Towards Visualizing Complex Networks
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2025.137816
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Henry Ehlers
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Wu, Hsiang-Yun
-
tuw.publication.orgunit
E193 - Institut für Visual Computing and Human-Centered Technology
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC17730567
-
dc.description.numberOfPages
287
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
tuw.author.orcid
0000-0002-5994-1492
-
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.assistant.staffStatus
staff
-
tuw.advisor.orcid
0000-0003-2468-0664
-
tuw.assistant.orcid
0000-0003-1028-0010
-
item.openaccessfulltext
Open Access
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
item.mimetype
application/pdf
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.grantfulltext
open
-
item.openairetype
doctoral thesis
-
item.languageiso639-1
en
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity