<div class="csl-bib-body">
<div class="csl-entry">Weinbauer, K., Phan, T.-L., Stadler, P. F., Gärtner, T., & Malhotra, S. (2025). <i>Prime Implicant Explanations for Reaction Feasibility Prediction</i>. https://doi.org/10.48550/ARXIV.2510.09226</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/222274
-
dc.description.abstract
Machine learning models that predict the feasibility of chemical reactions have become central to automated synthesis planning. Despite their predictive success, these models often lack transparency and interpretability. We introduce a novel formulation of prime implicant explanations--also known as minimally sufficient reasons--tailored to this domain, and propose an algorithm for computing such explanations in small-scale reaction prediction tasks. Preliminary experiments demonstrate that our notion of prime implicant explanations conservatively captures the ground truth explanations. That is, such explanations often contain redundant bonds and atoms but consistently capture the molecular attributes that are essential for predicting reaction feasibility.
en
dc.description.sponsorship
European Commission
-
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.language.iso
en
-
dc.subject
Prime Implicant Explanation
en
dc.subject
Subgraph Explanation
en
dc.subject
Reaction Prediction
en
dc.subject
Synthesis Planning
en
dc.title
Prime Implicant Explanations for Reaction Feasibility Prediction
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.contributor.affiliation
Department of Mathematics and Computer Science - University of Southern Denmark (Odense, DK)
-
dc.contributor.affiliation
Max Planck Institute for Mathematics in the Sciences (Leipzig , DE)
-
dc.relation.grantno
Proposal number: 101072930
-
dc.relation.grantno
ICT22-059
-
tuw.project.title
Training Alliance for Computational Systems chemistry
-
tuw.project.title
Structured Data Learning with Generalized Similarities
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
60
-
tuw.publication.orgunit
E194-06 - Forschungsbereich Machine Learning
-
tuw.publication.orgunit
E056-10 - Fachbereich SecInt-Secure and Intelligent Human-Centric Digital Technologies
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publication.orgunit
E056-26 - Fachbereich Automated Reasoning
-
tuw.publisher.doi
10.48550/ARXIV.2510.09226
-
tuw.author.orcid
0000-0002-3349-9157
-
tuw.author.orcid
0000-0002-3532-2064
-
tuw.author.orcid
0000-0002-5016-5191
-
tuw.author.orcid
0000-0001-5985-9213
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.grantfulltext
none
-
item.openairetype
preprint
-
item.languageiso639-1
en
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.dept
Department of Mathematics and Computer Science - University of Southern Denmark (Odense, DK)
-
crisitem.author.dept
Max Planck Institute for Mathematics in the Sciences (Leipzig , DE)
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.orcid
0000-0002-3349-9157
-
crisitem.author.orcid
0000-0002-3532-2064
-
crisitem.author.orcid
0000-0002-5016-5191
-
crisitem.author.orcid
0000-0001-5985-9213
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.project.funder
European Commission
-
crisitem.project.funder
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds