<div class="csl-bib-body">
<div class="csl-entry">Künig, L., Kohl, L., Aghaei Dinani, S., & Ansari, F. (2025). Explainable Event Extraction in Knowledge-Based Maintenance. In S. Thiede, R. Damgrave, T. Vanekar, & E. Lutters (Eds.), <i>58th CIRP Conference on Manufacturing Systems 2025</i> (pp. 711–716). Elsevier BV. https://doi.org/10.1016/j.procir.2025.02.177</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/222374
-
dc.description.abstract
As an integral part of Industry 4.0, industrial maintenance is adopting smart methods, giving rise to knowledge-based maintenance. This transition requires the integration of advanced digital technologies to optimize maintenance strategies, where natural language processing (NLP) plays a crucial role. Transformer models, as a recent advancement in NLP, enable the extraction of relevant information—such as industrial events—from unstructured maintenance data, revealing hidden patterns and informing decision making. This paper conceptualizes the task of event extraction as a classification problem, applying transformer-based models and zero-shot learning. The proposed approach addresses the absence of labeled training data in maintenance sectors and also offers a solution to enhance transparency and explainability for the extracted events. In this paper, we present the performance of four transformer-based models in terms of accuracy and F1-score across four synthetic datasets available in English and German. Furthermore, we apply the Shapley value method to visualize the quantification of each token’s contribution within the text to the model’s prediction (i.e., the extracted event). We also design and develop an intuitive graphical user interface that not only facilitates user interaction but also promotes transparency.
The experimental results demonstrate the effectiveness of transformer-based models for industrial event extraction, providing a powerful tool for the maintenance sector to extract valuable insights from unstructured data within historical maintenance logs, sensor data, and technical manuals. Moreover, the integration of explainability through the Shapley value method offers a deeper understanding of the model’s decision-making process, which is essential in real-world applications in manufacturing systems.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Procedia CIRP
-
dc.subject
Event Extraction
en
dc.subject
Explainability
en
dc.subject
Industry 4.0
en
dc.subject
Knowledge-Based Maintenance
en
dc.subject
Natural Language Processing
en
dc.subject
Transformer
en
dc.subject
Zero-Shot
en
dc.title
Explainable Event Extraction in Knowledge-Based Maintenance
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
TU Wien, Austria
-
dc.description.startpage
711
-
dc.description.endpage
716
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2212-8271
-
tuw.booktitle
58th CIRP Conference on Manufacturing Systems 2025
-
tuw.container.volume
134
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Elsevier BV
-
tuw.researchTopic.id
I6
-
tuw.researchTopic.id
E6
-
tuw.researchTopic.name
Digital Transformation in Manufacturing
-
tuw.researchTopic.name
Sustainable Production and Technologies
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
tuw.publication.orgunit
E330-06 - Forschungsbereich Produktions- und Instandhaltungsmanagement
-
tuw.publisher.doi
10.1016/j.procir.2025.02.177
-
dc.description.numberOfPages
6
-
tuw.author.orcid
0000-0002-3019-4403
-
tuw.author.orcid
0000-0002-2705-0396
-
tuw.event.name
58th CIRP Conference on Manufacturing Systems 2025
en
tuw.event.startdate
13-04-2025
-
tuw.event.enddate
16-04-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Enschede
-
tuw.event.country
NL
-
tuw.event.institution
University of Twente
-
tuw.event.presenter
Ansari, Fazel
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch
Sonstige Technische Wissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.oefos
2119
-
wb.sciencebranch.value
20
-
wb.sciencebranch.value
50
-
wb.sciencebranch.value
30
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E330 - Institut für Managementwissenschaften
-
crisitem.author.dept
E330-06 - Forschungsbereich Produktions- und Instandhaltungsmanagement
-
crisitem.author.dept
E330-06 - Forschungsbereich Produktions- und Instandhaltungsmanagement
-
crisitem.author.orcid
0000-0002-3019-4403
-
crisitem.author.orcid
0000-0002-2705-0396
-
crisitem.author.parentorg
E300 - Fakultät für Maschinenwesen und Betriebswissenschaften