<div class="csl-bib-body">
<div class="csl-entry">Key, F., & Freinberger, L. (2026). A spline-based stress function approach for the principle of minimum complementary energy. <i>Computer Methods in Applied Mechanics and Engineering</i>, <i>448</i>(Part B), Article 118492. https://doi.org/10.1016/j.cma.2025.118492</div>
</div>
-
dc.identifier.issn
0045-7825
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/222379
-
dc.description.abstract
In computational engineering, ensuring the integrity and safety of structures in fields such as aerospace and civil engineering relies on accurate stress prediction. However, analytical methods are limited to simple test cases, and displacement-based finite element methods (FEMs), while commonly used, require a large number of unknowns to achieve high accuracy; stress-based numerical methods have so far failed to provide a simple and effective alternative. This work aims to develop a novel numerical approach that overcomes these limitations by enabling accurate stress prediction with improved flexibility for complex geometries and boundary conditions and fewer degree of freedoms (DOFs). The proposed method is based on a spline-based stress function formulation for the principle of minimum complementary energy, which we apply to plane, linear elastostatics. The method is first validated against analytical solutions and then tested on two test cases challenging for current state-of-the-art numerical schemes—a bi-layer cantilever with anisotropic material behavior and a cantilever with a non-prismatic, parabolic-shaped beam geometry. Results demonstrate that our approach, unlike analytical methods, can be easily applied to general geometries and boundary conditions, and achieves stress accuracy comparable to that reported in the literature for displacement-based FEMs, while requiring significantly fewer DOFs. This novel spline-based stress function approach thus provides an efficient and flexible tool for accurate stress prediction, with promising applications in structural analysis and numerical design.
en
dc.language.iso
en
-
dc.publisher
ELSEVIER SCIENCE SA
-
dc.relation.ispartof
Computer Methods in Applied Mechanics and Engineering
-
dc.subject
Stress Analysis
en
dc.subject
Stress Function
en
dc.subject
Spline Approximation
en
dc.subject
Complementary Energy
en
dc.subject
Linear Elastostatics
en
dc.title
A spline-based stress function approach for the principle of minimum complementary energy
en
dc.type
Article
en
dc.type
Artikel
de
dc.type.category
Original Research Article
-
tuw.container.volume
448
-
tuw.container.issue
Part B
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C3
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Computational System Design
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
dcterms.isPartOf.title
Computer Methods in Applied Mechanics and Engineering
-
tuw.publication.orgunit
E317-01-1 - Forschungsgruppe Numerische Analyse- und Designmethoden
-
tuw.publisher.doi
10.1016/j.cma.2025.118492
-
dc.date.onlinefirst
2025-10-26
-
dc.identifier.articleid
118492
-
dc.identifier.eissn
1879-2138
-
dc.description.numberOfPages
21
-
tuw.author.orcid
0000-0001-6622-4806
-
wb.sci
true
-
wb.sciencebranch
Maschinenbau
-
wb.sciencebranch
Sonstige Technische Wissenschaften
-
wb.sciencebranch.oefos
2030
-
wb.sciencebranch.oefos
2119
-
wb.sciencebranch.value
40
-
wb.sciencebranch.value
60
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.grantfulltext
restricted
-
item.openairetype
research article
-
item.languageiso639-1
en
-
crisitem.author.dept
E317-01-1 - Forschungsgruppe Numerische Analyse- und Designmethoden
-
crisitem.author.dept
E317-01-1 - Forschungsgruppe Numerische Analyse- und Designmethoden