<div class="csl-bib-body">
<div class="csl-entry">Farsang, M., & Grosu, R. (2025). Liquid Capacitance-Extended Neural Circuits: Synaptic Activation and Dual Liquid Dynamics for Interpretable Bio-Inspired Models. In <i>International Conference on Engineering for Life Sciences : ENROL 2025 : Book of Abstracts</i> (pp. 15–15). http://hdl.handle.net/20.500.12708/222456</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/222456
-
dc.description.abstract
Previous work investigated saturated Electrical Equivalent Circuits (EECs) using either electrical or chemical synapses in sparse or fully connected wiring architectures. These studies demonstrated that sparse topologies enhance interpretability and that chemical synapses outperform electrical synapses in robustness. Particularly, compared chemical synapse-based Liquid Time Constant (LTC) networks against electrical synapse-based Continuous-Time Recurrent Neural Networks (CT-RNNs), both rooted in neural ordinary differential equations (Neural ODEs) requiring computationally intensive hybrid ODE solvers for precise integration. Recent advances introduced a liquid capacitance term into biologically inspired saturated LTC models, yielding Liquid Resistance Liquid Capacitance (LRC) networks. This modification was motivated by findings showing nonlinear dependencies of the membrane capacitance on input and state variables. Unlike LTCs, LRCs exhibit smoother dynamics due to their input- and state-dependent capacitance-resistance terms, enabling simpler explicit Euler solvers (one-step integration) instead of costly hybrid methods while keeping interpretable dynamics. Building on these foundations, we extend the liquid capacitance concept to electrical synapse models - termed Liquid Capacitance (LC) networks - and systematically analyze mixed architectures. By default, chemical synapses have an activation per synapse, and electrical synapses have an activation per neuron. To have a systematic analysis, we also consider mixed models, both LCs and LRCs.
en
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.subject
Liquid resistance–capacitance networks
en
dc.subject
liquid capacitance models
en
dc.subject
neural ODEs
en
dc.subject
CT-RNN
en
dc.subject
synaptic activation
en
dc.subject
interpretability
en
dc.subject
biologically inspired neural networks
en
dc.subject
dynamical systems
en
dc.title
Liquid Capacitance-Extended Neural Circuits: Synaptic Activation and Dual Liquid Dynamics for Interpretable Bio-Inspired Models
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.doi
10.34726/9799
-
dc.description.startpage
15
-
dc.description.endpage
15
-
dc.relation.grantno
101034277
-
dc.type.category
Abstract Book Contribution
-
tuw.booktitle
International Conference on Engineering for Life Sciences : ENROL 2025 : Book of Abstracts
-
tuw.peerreviewed
true
-
tuw.project.title
Technik für Biowissenschaften Doktoratsstudium
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publication.orgunit
E056-17 - Fachbereich Trustworthy Autonomous Cyber-Physical Systems
-
dc.description.numberOfPages
1
-
tuw.author.orcid
0009-0002-9305-6507
-
tuw.author.orcid
0000-0001-5715-2142
-
tuw.event.name
1st International Conference on Engineering for Life Sciences (ENROL 2025)
en
tuw.event.startdate
29-06-2025
-
tuw.event.enddate
03-07-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Wien
-
tuw.event.country
AT
-
tuw.event.presenter
Farsang, Monika
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
50
-
wb.sciencebranch.value
40
-
wb.sciencebranch.value
10
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems