<div class="csl-bib-body">
<div class="csl-entry">Lygizou, E. M., Reiter, M., Maurer-Granofszky, M., Dworzak, M., & Grosu, R. (2025). Deep Learning for Automating the Immunophenotyping Assessment in Childhood Acute Leukemia Diagnosis. In <i>International Conference on Engineering for Life Sciences : ENROL 2025 : Book of Abstracts</i> (pp. 17–17). http://hdl.handle.net/20.500.12708/222457</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/222457
-
dc.description.abstract
Acute leukemias are a heterogeneous group of hematologic malignancies characterized by rapid
progression, making early and accurate diagnosis critical for effective treatment. These diseases are
primarily classified based on the lineage of the affected precursor cells, which begin to proliferate
uncontrollably. Immunophenotyping using Multiparameter Flow Cytometry (FCM) is a key diagnostic
tool [1], which provides high-dimensional, multi-parameter analysis of individual cells essential for
distinguishing between the lineages and phenotypes of childhood acute leukemia. However,
immunophenotyping evaluation remains a labor-intensive and expert-driven process, making it
susceptible to subjectivity and variability across clinical settings. To address these challenges, we
explore deep learning methodologies based on self-attention mechanisms to automate and enhance
immunophenotyping assessment.
Our approach is based on transformer-derived architectures tailored to unordered, high-dimensional
tabular data, making them particularly well-suited for modeling flow cytometric data where feature
ordering holds no intrinsic significance. In particular, we refine the Set Transformer framework [2] to
better capture complex feature dependencies while preserving permutation invariance, aligning naturally
with the structure of flow cytometric data. Additionally, we integrate specialized activation functions
that enhance representational capacity and optimization stability, resulting in improved classification
performance compared to previous deep learning approaches [3].
The model is trained in a supervised manner, directly utilizing raw FCM data without requiring manual
preprocessing, allowing it to fully leverage the richness of the high-dimensional input space.
Experimental evaluations on a diverse dataset demonstrate that our approach effectively distinguishes
between major lineages of pediatric acute leukemia, offering a promising step toward automating
hematologic diagnostics. The results indicate that leveraging self-attention enhances both classification
accuracy and generalization across heterogeneous patient samples.
This study underscores the potential of deep learning-driven immunophenotyping to complement
traditional diagnostic workflows, paving the way for more efficient and reproducible leukemia
assessments in clinical practice.
en
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.subject
Acute leukemia
en
dc.subject
immunophenotyping
en
dc.subject
flow cytometry
en
dc.subject
deep learning
en
dc.subject
self-attention
en
dc.subject
Set Transformer
en
dc.subject
high-dimensional data
en
dc.subject
pediatric hematologic diagnostics
en
dc.title
Deep Learning for Automating the Immunophenotyping Assessment in Childhood Acute Leukemia Diagnosis
-
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
St. Anna Children's Cancer Research Institute, Austria
-
dc.contributor.affiliation
St. Anna Children's Cancer Research Institute, Austria
-
dc.relation.doi
10.34726/9799
-
dc.description.startpage
17
-
dc.description.endpage
17
-
dc.relation.grantno
101034277
-
dc.type.category
Abstract Book Contribution
-
tuw.booktitle
International Conference on Engineering for Life Sciences : ENROL 2025 : Book of Abstracts
-
tuw.peerreviewed
true
-
tuw.project.title
Technik für Biowissenschaften Doktoratsstudium
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publication.orgunit
E193-01 - Forschungsbereich Computer Vision
-
tuw.publication.orgunit
E056-17 - Fachbereich Trustworthy Autonomous Cyber-Physical Systems
-
dc.description.numberOfPages
1
-
tuw.author.orcid
0009-0006-8350-7465
-
tuw.author.orcid
0000-0002-8004-6839
-
tuw.author.orcid
0000-0001-5715-2142
-
tuw.event.name
1st International Conference on Engineering for Life Sciences (ENROL 2025)
en
tuw.event.startdate
29-06-2025
-
tuw.event.enddate
03-07-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Wien
-
tuw.event.country
AT
-
tuw.event.presenter
Lygizou, Elpiniki Maria
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.grantfulltext
none
-
item.openairetype
conference paper
-
item.languageiso639-1
en
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.dept
St. Anna Children's Cancer Research Institute, Austria
-
crisitem.author.dept
St. Anna Children's Cancer Research Institute, Austria
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.orcid
0009-0006-8350-7465
-
crisitem.author.orcid
0000-0002-8004-6839
-
crisitem.author.orcid
0000-0001-5715-2142
-
crisitem.author.parentorg
E191 - Institut für Computer Engineering
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology