<div class="csl-bib-body">
<div class="csl-entry">Peer, M., Sablatnig, R., & Kleber, F. (2025). Towards the Influence of Text Quantity on Writer Retrieval. In X.-C. Yin, D. Karatzas, & D. Lopresti (Eds.), <i>Document Analysis and Recognition – ICDAR 2025 : 19th International Conference, Wuhan, China, September 16–21, 2025, Proceedings, Part II</i> (pp. 129–145). Springer. https://doi.org/10.1007/978-3-032-04617-8_8</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/222533
-
dc.description.abstract
This paper investigates the task of writer retrieval, which identifies documents authored by the same individual within a dataset based on handwriting similarities. While existing datasets and methodologies primarily focus on page level retrieval, we explore the impact of text quantity on writer retrieval performance by evaluating line- and word-level retrieval. We examine three state-of-the-art writer retrieval systems, including both handcrafted and deep learning-based approaches, and analyze their performance using varying amounts of text. Our experiments on the CVL and IAM dataset demonstrate that while performance decreases by 20–30% when only one line of text is used as query and gallery, retrieval accuracy remains above 90% of full-page performance when at least four lines are included. We further show that text-dependent retrieval can maintain strong performance in low-text scenarios. Our findings also highlight the limitations of handcrafted features in low-text scenarios, with deep learning-based methods like NetVLAD outperforming traditional VLAD encoding.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
Line level Retrieval
en
dc.subject
Text Quantity
en
dc.subject
Word level Retrieval
en
dc.subject
Writer Retrieval
en
dc.title
Towards the Influence of Text Quantity on Writer Retrieval
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.editoraffiliation
University of Science and Technology Beijing, China
-
dc.contributor.editoraffiliation
Universitat Autònoma de Barcelona, Spain
-
dc.contributor.editoraffiliation
Lehigh University, United States of America (the)
-
dc.relation.isbn
978-3-032-04617-8
-
dc.relation.issn
0302-9743
-
dc.description.startpage
129
-
dc.description.endpage
145
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1611-3349
-
tuw.booktitle
Document Analysis and Recognition – ICDAR 2025 : 19th International Conference, Wuhan, China, September 16–21, 2025, Proceedings, Part II
-
tuw.container.volume
16024
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E193-01 - Forschungsbereich Computer Vision
-
tuw.publication.orgunit
E056-12 - Fachbereich ENROL DP
-
tuw.publication.orgunit
E056-18 - Fachbereich Visual Analytics and Computer Vision Meet Cultural Heritage
-
tuw.publisher.doi
10.1007/978-3-032-04617-8_8
-
dc.description.numberOfPages
17
-
tuw.author.orcid
0000-0001-6843-0830
-
tuw.author.orcid
0000-0003-4195-1593
-
tuw.author.orcid
0000-0001-8351-5066
-
tuw.event.name
The 19th International Conference on Document Analysis and Recognition (ICDAR 2025)
en
tuw.event.startdate
16-09-2025
-
tuw.event.enddate
21-09-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Wuhan
-
tuw.event.country
CN
-
tuw.event.presenter
Peer, Marco
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.grantfulltext
restricted
-
item.openairetype
conference paper
-
item.languageiso639-1
en
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.dept
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.orcid
0000-0001-6843-0830
-
crisitem.author.orcid
0000-0003-4195-1593
-
crisitem.author.orcid
0000-0001-8351-5066
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E180 - Fakultät für Informatik
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology