<div class="csl-bib-body">
<div class="csl-entry">Freiin von Tubeuf, C. S., Bernhardt, T., aus der Schmitten, J., Heitzinger, C., Birkelbach, F., Hofmann, R., & Maly, A. (2025). Reinforcement Learning in Hydropower: Pump Start-Up Control in a Simulated Environment. In P. Rudolf & D. Stefan (Eds.), <i>IOP Conference Series: Earth and Environmental Science</i>. https://doi.org/10.1088/1755-1315/1561/1/012035</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/222621
-
dc.description.abstract
Reinforcement learning (RL) offers a promising framework for controlling transient processes in hydraulic machines. In this study, we apply RL to the start-up control of a reversible pump-turbine in a simulation of a pumped storage power system. A physics-based simulation environment capturing the system’s key hydraulic and mechanical dynamics is developed to train a Proximal Policy Optimization agent. Compared to a conventional control approach, the RL-based policy yields a higher cumulative reward in simulation by significantly reducing start-up time and cumulative operational cost. The approach demonstrates the potential of RL in a simulated pump start-up case, highlighting its ability to autonomously discover efficient control strategies for highly dynamic processes, such as pump start-up, without relying on predefined procedural logic. Future work includes experimental validation on a laboratory-scale pump-turbine to further investigate the policy’s performance under real-world conditions.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.subject
Pump Turbine
en
dc.subject
Process Control
en
dc.subject
Reinforcement Learning
en
dc.subject
Pump Start-Up
en
dc.title
Reinforcement Learning in Hydropower: Pump Start-Up Control in a Simulated Environment
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
TU Wien, Austria
-
dc.contributor.affiliation
TU Wien, Austria
-
dc.contributor.editoraffiliation
Brno University of Technology, Czechia
-
dc.contributor.editoraffiliation
Brno University of Technology, Czechia
-
dc.relation.issn
1755-1307
-
dc.relation.grantno
899921
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1755-1315
-
tuw.booktitle
IOP Conference Series: Earth and Environmental Science
-
tuw.container.volume
1561
-
tuw.peerreviewed
true
-
tuw.book.chapter
012035
-
tuw.project.title
Zuverlässiges bestärkendes Lernen für nachhaltige Energiesysteme
-
tuw.researchTopic.id
E3
-
tuw.researchTopic.name
Climate Neutral, Renewable and Conventional Energy Supply Systems