<div class="csl-bib-body">
<div class="csl-entry">Burges, M., Ambrozio Dias, P., Woody, C., Sarah E. Walters, & Lunga, D. (2025). Active Learning Meets Foundation Models: Fast Remote Sensing Data Annotation for Object Detection. In <i>Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)</i> (pp. 6058–6068). IEEE.</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/222670
-
dc.description.abstract
Object detection in remote sensing demands extensive, high-quality annotations—a process that is both labor-intensive and time-consuming. In this work, we introduce a real-time active learning and semi-automated labeling framework that leverages foundation models to streamline dataset annotation for object detection in remote sensing imagery. For example, by integrating a Segment Anything Model (SAM), our approach generates mask-based bound-ing boxes that serve as the basis for dual sampling: (a) uncertainty estimation to pinpoint challenging samples, and (b) diversity assessment to ensure broad data coverage. Furthermore, our Dynamic Box Switching Module (DBS) addresses the well-known cold start problem for object de-tection models by replacing its suboptimal initial predictions with SAM-derived masks, thereby enhancing early-stage localization accuracy. Extensive evaluations on multiple remote sensing datasets, along with a real-world user study, demonstrate that our framework not only reduces annotation effort but also significantly boosts detection performance compared to traditional active learning sampling methods. The code for training and the user interface is available under https://github.com/mburges-cvl/ICCV_AL4FM.
en
dc.language.iso
en
-
dc.subject
Remote Sensing
en
dc.subject
Object Detection
en
dc.subject
Active Learning
en
dc.subject
User Study
en
dc.title
Active Learning Meets Foundation Models: Fast Remote Sensing Data Annotation for Object Detection
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Oak Ridge National Laboratory (Oak Ridge, US)
-
dc.contributor.affiliation
Human Geography - Oak Ridge National Laboratory (Oak Ridge, US)
-
dc.contributor.affiliation
Oak Ridge National Laboratory, United States of America (the)
-
dc.contributor.affiliation
Computational Sciences and Engineering Division - Oak Ridge National Laboratory (Oak Ridge, US)
-
dc.description.startpage
6058
-
dc.description.endpage
6068
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E193-01 - Forschungsbereich Computer Vision
-
dc.description.numberOfPages
11
-
tuw.author.orcid
0000-0003-1269-0769
-
tuw.author.orcid
0000-0001-9427-7112
-
tuw.author.orcid
0000-0003-2365-1159
-
tuw.author.orcid
0000-0002-3318-8543
-
tuw.author.orcid
0000-0003-0054-1141
-
tuw.event.name
IEEE/CVF International Conference on Computer Vision (ICCV)
en
tuw.event.startdate
19-10-2025
-
tuw.event.enddate
23-10-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Honolulu
-
tuw.event.country
US
-
tuw.event.presenter
Burges, Marvin
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
restricted
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
item.languageiso639-1
en
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.dept
Oak Ridge National Laboratory (Oak Ridge, US)
-
crisitem.author.dept
Human Geography - Oak Ridge National Laboratory (Oak Ridge, US)
-
crisitem.author.dept
Oak Ridge National Laboratory, United States of America (the)
-
crisitem.author.dept
Computational Sciences and Engineering Division - Oak Ridge National Laboratory (Oak Ridge, US)
-
crisitem.author.orcid
0000-0003-1269-0769
-
crisitem.author.orcid
0000-0001-9427-7112
-
crisitem.author.orcid
0000-0003-2365-1159
-
crisitem.author.orcid
0000-0002-3318-8543
-
crisitem.author.orcid
0000-0003-0054-1141
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology