<div class="csl-bib-body">
<div class="csl-entry">Morais, G., Lemelin, E., Adda, M., & Bork, D. (2025). Enhancing API Labelling with BERT and GPT: An Exploratory Study. In <i>Enterprise Design, Operations, and Computing. EDOC 2024 Workshops</i> (pp. 169–182). https://doi.org/10.1007/978-3-031-79059-1_11</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/222673
-
dc.description.abstract
Application Programming Interfaces (APIs) enable interaction, integration, and interoperability among applications and services, contributing to their adoption and proliferation. However, discovering APIs has relied on manual, time-consuming, costly processes that jeopardize their reuse potential and accentuate the need for effective API retrieval mechanisms. Leveraging the OpenAPI Specification as a basis, this paper presents an exploratory study that combines BERT and GPT machine learning models to propose a novel API classifier. Our investigation explored the zero-shot learning capabilities of GPT-4 and GPT-3.5 using relevant terms extracted from API descriptions using BERT. The evaluation of our approach on two datasets comprising 940 API descriptions sourced from public repositories yielded an F1-score of 100% in the small dataset (17 APIs) and 39.1% in the large dataset (923 APIs). These results surpass state-of-the-art on the small dataset with an impressive 29-point improvement. The large dataset showed GPT can suggest labels not in the provided list. Manual analysis revealed that GPT’s suggested labels fit the API intent better in 18 out of 20 cases, highlighting its potential for unknown classes and mismatch detection. This emphasizes the need to improve dataset quality and availability for API research. Our findings show the potential of automated API retrieval and open avenues for future research.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Business Information Processing
-
dc.subject
API classification
en
dc.subject
BERT
en
dc.subject
GPT
en
dc.subject
OpenAPI Specification
en
dc.title
Enhancing API Labelling with BERT and GPT: An Exploratory Study
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Universit� du Qu�bec � Rimouski
-
dc.contributor.affiliation
Université Laval (Québec, CA)
-
dc.contributor.affiliation
Université du Québec à Rimouski (Rimouski, CA)
-
dc.relation.isbn
978-3-031-79059-1
-
dc.description.startpage
169
-
dc.description.endpage
182
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Enterprise Design, Operations, and Computing. EDOC 2024 Workshops
-
tuw.container.volume
537
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-03 - Forschungsbereich Business Informatics
-
tuw.publisher.doi
10.1007/978-3-031-79059-1_11
-
dc.description.numberOfPages
14
-
tuw.author.orcid
0009-0006-5994-9773
-
tuw.author.orcid
0000-0002-5327-1758
-
tuw.author.orcid
0000-0001-8259-2297
-
tuw.event.name
28th International Conference on Enterprise Design, Operations, and Computing (EDOC 2024)
en
tuw.event.startdate
10-09-2024
-
tuw.event.enddate
13-09-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Wien
-
tuw.event.country
AT
-
tuw.event.institution
TU Wien
-
tuw.event.presenter
Morais, Gabriel
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
crisitem.author.dept
Universit� du Qu�bec � Rimouski
-
crisitem.author.dept
Université Laval (Québec, CA)
-
crisitem.author.dept
Université du Québec à Rimouski (Rimouski, CA)
-
crisitem.author.dept
E194-03 - Forschungsbereich Business Informatics
-
crisitem.author.orcid
0009-0006-5994-9773
-
crisitem.author.orcid
0000-0002-5327-1758
-
crisitem.author.orcid
0000-0001-8259-2297
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering