<div class="csl-bib-body">
<div class="csl-entry">Rhomberg-Kauert, J., Dammert, L., & Mandlburger, G. (2025). Enhancing bathymetric LiDAR by applying fractal dimensions to signal processing. In S. Al Mansoori, N. Kaur, M. Haneef, & International Society for Photogrammetry and Remote Sensing (ISPRS) (Eds.), <i>ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025</i> (pp. 721–728). https://doi.org/10.5194/isprs-annals-X-G-2025-721-2025</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/222709
-
dc.description.abstract
Fractal dimension is a statistical index of complexity to characterize geometries. It is commonly used in signal processing in different fields of research. There, observations of dynamic systems can be translated into numerical values allowing us to classify signals into groups of similar characteristics. In full-waveform LiDAR this methodology can be applied to the reflected echo pulse, thus enabling an analysis based on the overall waveform characteristics. Consequently, the fractal dimension of the full-waveform can be leveraged to differentiate between echo pulses with a high number of returns and single- or low-return echo pulses. This introduces an independent measure, which is calculated prior to the signal processing step. The advantage of this initial classification is that the echo pulse extraction could be further improved without need for human supervision, as the correlation between the number of echo pulses and the fractal dimension hints towards a measure of estimating the number of echo pulses within a recorded full-waveform. To conclude, we expand the concept of the fractal dimension to LiDAR waveforms and use the extracted correlation between the number of echo pulses and the fractal dimension to gain new insights for estimating the total number of echo pulses. This improvement is demonstrated through comparisons with manually annotated data, advancing the state-of-the-art in full-waveform analysis and introducing additional parameters.
en
dc.language.iso
en
-
dc.subject
aquatic vegetation
en
dc.subject
fractal dimension
en
dc.subject
full-waveform
en
dc.subject
laser bathymetry
en
dc.subject
laser scanning
en
dc.title
Enhancing bathymetric LiDAR by applying fractal dimensions to signal processing
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.description.startpage
721
-
dc.description.endpage
728
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2194-9050
-
tuw.booktitle
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-G-2025
-
tuw.container.volume
10
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
E4
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
I8
-
tuw.researchTopic.name
Environmental Monitoring and Climate Adaptation
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.name
Sensor Systems
-
tuw.researchTopic.value
40
-
tuw.researchTopic.value
40
-
tuw.researchTopic.value
20
-
tuw.publication.orgunit
E120-07 - Forschungsbereich Photogrammetrie
-
tuw.publication.orgunit
E120-05 - Forschungsbereich Ingenieurgeodäsie
-
tuw.publisher.doi
10.5194/isprs-annals-X-G-2025-721-2025
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0009-0007-0029-2372
-
tuw.author.orcid
0000-0002-2332-293X
-
tuw.editor.orcid
0000-0001-6639-512X
-
tuw.editor.orcid
0000-0001-6724-4702
-
tuw.editor.orcid
0000-0002-5846-0603
-
tuw.event.name
SPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2025
en
tuw.event.startdate
06-04-2025
-
tuw.event.enddate
11-04-2025
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Dubai
-
tuw.event.country
AE
-
tuw.event.presenter
Rhomberg-Kauert, Jan
-
wb.sciencebranch
Geodäsie, Vermessungswesen
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Physische Geographie
-
wb.sciencebranch.oefos
2074
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1054
-
wb.sciencebranch.value
70
-
wb.sciencebranch.value
15
-
wb.sciencebranch.value
15
-
dc.contributor.editorgroup
International Society for Photogrammetry and Remote Sensing (ISPRS)