<div class="csl-bib-body">
<div class="csl-entry">Garrappa, R., Gerhold, S., Popolizio, M., & Thomas, S. (2025). On some inequalities for the two-parameter Mittag-Leffler function in the complex plane. <i>Journal of Mathematical Analysis and Applications</i>, <i>551</i>(1), Article 129588. https://doi.org/10.1016/j.jmaa.2025.129588</div>
</div>
-
dc.identifier.issn
0022-247X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/222771
-
dc.description.abstract
For the two-parameter Mittag-Leffler function Eα,β with α > 0 and β ≥ 0, we consider the question whether |Eα,β (z)| and Eα,β (ℜz) are comparable on the whole complex plane. We show that the inequality |Eα,β(z)| ≤ Eα,β(ℜz) holds globally if and only if Eα,β(−x) is completely monotone on (0, ∞). Forα ∈ [1, 2) we prove that the complete monotonicity of 1/Eα,β(x) on (0, ∞) is necessary for the global inequality |Eα,β (z)| ≥ Eα,β (ℜz), and also sufficient for α = 1. For α ≥ 2 we show
that the absence of non-real zeros for Eα,β is sufficient for the global inequality
|Eα,β(z)| ≥ Eα,β(ℜz), and also necessary for α = 2. All these results have an explicit description in terms of the values of the parameters α, β. Along the way, several inequalities for Eα,β on the half-plane {ℜz ≥ 0} are established, and a characterization of its log-convexity and log-concavity on the positive half-line is obtained.
en
dc.language.iso
en
-
dc.publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
-
dc.relation.ispartof
Journal of Mathematical Analysis and Applications
-
dc.subject
Asymptotic expansions
en
dc.subject
Complete monotonicity
en
dc.subject
Inequalities
en
dc.subject
Log-concavity
en
dc.subject
Mittag-Leffler functions
en
dc.subject
Complex Analysis
en
dc.title
On some inequalities for the two-parameter Mittag-Leffler function in the complex plane