<div class="csl-bib-body">
<div class="csl-entry">Sturm, K. (2025). <i>A multimaterial topology optimisation approach to Dirichlet control with piecewise constant functions</i>. https://doi.org/10.48550/arXiv.2501.12804</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/222782
-
dc.description.abstract
In this paper we study a Dirichlet control problem for the Poisson equation, where the control is assumed to be piecewise constant function which is allowed to take M > 1 different values. The space of admissible Dirichlet controls is non-convex and therefore standard derivatives in Banach spaces are not applicable. Furthermore piecewise constant functions are too irregular that the standard extension techniques apply. Therefore we resort to the notion of very weak solutions of the state equation in Lp spaces. We then study the differentiability of the shape-to-state operator of this problem and derive the first order necessary optimality conditions using the topological state derivative. In fact we prove the existence of the weak topological state derivative introduced for a multimaterial shape functional which is then expressed via an adjoint variable. The topological derivative resembles formulas found for derivative in the more standard Dirichlet control problems. In the final part of the paper we show how to apply a multimaterial level-set algorithm with the finite element software NGSolve and present several numerical examples in dimension three.
en
dc.language.iso
en
-
dc.subject
Numerical algorithm
en
dc.subject
Dirichlet control problem
en
dc.subject
Poisson Distribution
en
dc.title
A multimaterial topology optimisation approach to Dirichlet control with piecewise constant functions
-
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2501.12804
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E101-02 - Forschungsbereich Numerik
-
tuw.publisher.doi
10.48550/arXiv.2501.12804
-
dc.description.numberOfPages
18
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.openairetype
preprint
-
item.languageiso639-1
en
-
crisitem.author.dept
E101-02 - Forschungsbereich Numerik
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing