<div class="csl-bib-body">
<div class="csl-entry">Da Ros, F., Di Gaspero, L., Lackner, M.-L., Musliu, N., & Soprano, M. (2025). Search Trajectory Networks Applied to a Real-World Parallel Batch Scheduling Problem. In <i>Applications of Evolutionary Computation : 28th European Conference, EvoApplications 2025, Held as Part of EvoStar 2025, Trieste, Italy, April 23–25, 2025, Proceedings, Part I</i> (pp. 68–85). Springer. https://doi.org/10.1007/978-3-031-90062-4_5</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/222793
-
dc.description.abstract
We investigate solution methods for the Oven Scheduling Problem (OSP), a parallel batch scheduling optimization problem in semiconductor manufacturing, using Search Trajectory Networks (STNs). STNs are a recently introduced tool to analyze and compare the behavior of metaheuristic algorithms concerning their exploration ability w.r.t. single problem instances. We consider two state-of-the-art algorithms for the OSP, a Simulated Annealing (SA) and a Large Neighborhood Search (LNS), and instances from the literature. The STNs enable us to draw the following conclusions: (i) The two algorithms’ trajectories overlap especially at the beginning of the trajectories, as revealed by a search space partitioning based on Hierarchical Agglomerative Clustering; (ii) The fitness landscape of many instances is multi-modal, with several high-quality solutions scattered in the search space; (iii) SA trajectories are longer, but the number of locations visited by SA and LNS is similar.
en
dc.description.sponsorship
Christian Doppler Forschungsgesells
-
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
Algorithm visualization
en
dc.subject
Algorithmic behavior
en
dc.subject
Empirical analysis
en
dc.subject
Explainability
en
dc.subject
Large neighborhood search
en
dc.subject
Oven scheduling problem
en
dc.subject
Search space partitioning
en
dc.subject
Simulated annealing
en
dc.title
Search Trajectory Networks Applied to a Real-World Parallel Batch Scheduling Problem
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
University of Udine, Italy
-
dc.contributor.affiliation
University of Udine, Italy
-
dc.contributor.affiliation
University of Udine, Italy
-
dc.relation.isbn
978-3-031-90062-4
-
dc.relation.doi
10.1007/978-3-031-90062-4
-
dc.relation.issn
0302-9743
-
dc.description.startpage
68
-
dc.description.endpage
85
-
dc.relation.grantno
keine Angabe
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1611-3349
-
tuw.booktitle
Applications of Evolutionary Computation : 28th European Conference, EvoApplications 2025, Held as Part of EvoStar 2025, Trieste, Italy, April 23–25, 2025, Proceedings, Part I
-
tuw.container.volume
15612
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.project.title
CD Labor für Künstliche Intelligenz und Optimierung in Planung und Scheduling
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publisher.doi
10.1007/978-3-031-90062-4_5
-
dc.description.numberOfPages
18
-
tuw.author.orcid
0000-0001-7026-4165
-
tuw.author.orcid
0000-0003-0299-6086
-
tuw.author.orcid
0000-0002-9916-9011
-
tuw.author.orcid
0000-0002-3992-8637
-
tuw.author.orcid
0000-0002-7337-7592
-
tuw.event.name
28th European Conference (EvoApplications 2025)
en
tuw.event.startdate
23-04-2025
-
tuw.event.enddate
25-04-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Triest
-
tuw.event.country
IT
-
tuw.event.presenter
Lackner, Marie-Louise
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
crisitem.author.dept
University of Udine, Italy
-
crisitem.author.dept
University of Udine, Italy
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence