<div class="csl-bib-body">
<div class="csl-entry">Danzinger, P., Geibinger, T., Mischek, F., & Musliu, N. (2025). Modeling and Solving the Generalized Test Laboratory Scheduling Problem. In <i>Integration of Constraint Programming, Artificial Intelligence, and Operations Research : 22nd International Conference, CPAIOR 2025, Melbourne, VIC, Australia, November 10–13, 2025, Proceedings, Part I</i> (pp. 188–204). Springer. https://doi.org/10.1007/978-3-031-95973-8_12</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/222794
-
dc.description.abstract
The Test Laboratory Scheduling Problem (TLSP) is an NP-hard scheduling problem based on the real-world scheduling requirements of an industrial test laboratory. TLSP requires the solver to find a grouping of tasks into jobs, and to schedule those jobs, assigning resources of different types (employees, workbenches, and equipment) and optimizing different soft constraints. Over time, new real-world scheduling requirements have emerged that necessitate a more flexible description of resources. To deal with such situations, in this paper, we propose Generalized TLSP (G-TLSP), a new problem extension of TLSP which unifies different resource types. To solve G-TLSP, we propose a new Constraint Programming (CP) model and solve instances with exact CP solvers as well as with a Very Large Neighborhood Search (VLNS) algorithm. Our approaches are evaluated on existing instances as well as two new real-world instances. We achieve competitive performance with existing specialized solvers on converted TLSP instances and find high-quality solutions for the new real-world instances.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
Christian Doppler Forschungsgesells
-
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
Combinatorial Optimization
en
dc.subject
Constraint Programming
en
dc.subject
Modeling
en
dc.subject
Scheduling
en
dc.subject
Very Large Neighborhood Search
en
dc.title
Modeling and Solving the Generalized Test Laboratory Scheduling Problem
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
978-3-031-95973-8
-
dc.relation.doi
10.1007/978-3-031-95973-8
-
dc.relation.issn
0302-9743
-
dc.description.startpage
188
-
dc.description.endpage
204
-
dc.relation.grantno
I5443-N
-
dc.relation.grantno
keine Angabe
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1611-3349
-
tuw.booktitle
Integration of Constraint Programming, Artificial Intelligence, and Operations Research : 22nd International Conference, CPAIOR 2025, Melbourne, VIC, Australia, November 10–13, 2025, Proceedings, Part I
-
tuw.container.volume
15762
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.project.title
Reverse supply chain of residual wood biomass
-
tuw.project.title
CD Labor für Künstliche Intelligenz und Optimierung in Planung und Scheduling
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-03 - Forschungsbereich Knowledge Based Systems
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publisher.doi
10.1007/978-3-031-95973-8_12
-
dc.description.numberOfPages
17
-
tuw.author.orcid
0000-0003-2209-1516
-
tuw.author.orcid
0000-0002-0856-7162
-
tuw.author.orcid
0000-0003-1166-3881
-
tuw.author.orcid
0000-0002-3992-8637
-
tuw.event.name
22nd International Conference (CPAIOR 2025)
en
tuw.event.startdate
10-11-2025
-
tuw.event.enddate
13-11-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Melbourne
-
tuw.event.country
AU
-
tuw.event.presenter
Danzinger, Philipp
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-03 - Forschungsbereich Knowledge Based Systems
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence