<div class="csl-bib-body">
<div class="csl-entry">Thoma, M., Tobias Preintner, Aghajanzadeh, E., Balamuthu Sampath, S., Mori, P., Fasfous, N., Vemparala, M.-R., Frickenstein, A., Mueller-Gritschneder, D., & Schlichtmann, U. (2025). Uncertainty Aware Training to Improve Uncertainty Active Learning for Semantic Segmentation. In <i>2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</i> (pp. 4401–4411). IEEE. https://doi.org/10.1109/CVPRW67362.2025.00425</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/222804
-
dc.description.abstract
Active learning (AL) on deployed devices involves collecting data to improve the performance of machine learning models beyond their initial version. In this context, the collected data must be uploaded to a remote server for training the next version of the model. Data collection on deployed devices can pose one of two challenges: (1) if done naively, large quantities of uninformative data are uploaded or (2) if complex data selection algorithms are used, careful curation of data introduces a compute overhead that is unrelated to the main task. In this paper, we introduce a novel Uncertainty Aware Active Learning (UAAL) method for semantic segmentation that integrates uncertainty estimates into the training process, thereby conditioning the model for an AL setup before deployment time. This enhances the quality of the collected data for an existing selection technique without adding more complexity to the selection algorithm. Essentially, the model outputs provide a clearer indication to the selection algorithm about its own uncertainty. We integrate UAAL with five uncertainty AL methods and demonstrate its efficacy on the CityScapes and ADE20K datasets using three DeepLabv3+ variants. On the CityScapes dataset, with a 10% data budget, UAAL achieves an average mIoU increase of +1.74 p.p., peaking at +3.49 p.p. for MobileNetV3 combined with MC-Dropout. Similarly, on ADE20K, UAAL boosts ResNet-50 with MCDropout by +2.22 p.p. at the same data budget, all while not adding any complexity to the data selection process.
en
dc.language.iso
en
-
dc.subject
active learning
en
dc.subject
data collection
en
dc.subject
deep learning
en
dc.subject
distributed
en
dc.subject
machine learning
en
dc.subject
semantic segmentation
en
dc.subject
uncertainty aware active learning
en
dc.title
Uncertainty Aware Training to Improve Uncertainty Active Learning for Semantic Segmentation
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Technical University of Munich, Germany
-
dc.contributor.affiliation
BMW Group (Germany) (Munich, DE)
-
dc.contributor.affiliation
Technical University of Munich, Germany
-
dc.contributor.affiliation
Technical University of Munich, Germany
-
dc.contributor.affiliation
BMW Group (Germany), Germany
-
dc.contributor.affiliation
BMW Group (Germany), Germany
-
dc.contributor.affiliation
BMW Group (Germany), Germany
-
dc.contributor.affiliation
BMW Group (Germany), Germany
-
dc.contributor.affiliation
Technical University of Munich, Germany
-
dc.relation.isbn
979-8-3315-9994-2
-
dc.relation.doi
10.1109/CVPRW67362.2025
-
dc.description.startpage
4401
-
dc.description.endpage
4411
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-02 - Forschungsbereich Embedded Computing Systems
-
tuw.publisher.doi
10.1109/CVPRW67362.2025.00425
-
dc.description.numberOfPages
11
-
tuw.author.orcid
0009-0004-9939-6793
-
tuw.author.orcid
0009-0005-1988-3848
-
tuw.author.orcid
0000-0003-0903-631X
-
tuw.event.name
2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
en
tuw.event.startdate
11-06-2025
-
tuw.event.enddate
12-06-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Nashville
-
tuw.event.country
US
-
tuw.event.presenter
Thoma, Moritz
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
50
-
wb.sciencebranch.value
40
-
wb.sciencebranch.value
10
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
crisitem.author.dept
Technical University of Munich, Germany
-
crisitem.author.dept
BMW Group (Germany) (Munich, DE)
-
crisitem.author.dept
Technical University of Munich, Germany
-
crisitem.author.dept
Technical University of Munich, Germany
-
crisitem.author.dept
BMW Group (Germany), Germany
-
crisitem.author.dept
BMW Group (Germany), Germany
-
crisitem.author.dept
BMW Group (Germany), Germany
-
crisitem.author.dept
BMW Group (Germany), Germany
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems