<div class="csl-bib-body">
<div class="csl-entry">Shashaani, S., Seshadri, P., & Knees, P. (2025). An Analysis of the Evolution of Music Listening Data and the Need for Task Discernment. In A. Ferraro, L. Porcaro, & C. Bauer (Eds.), <i>Proceedings of the 3rd Music Recommender Systems Workshop (MuRS 2025) co-located with the 19th ACM Conference on Recommender Systems (RecSys 2025)</i>. CEUR-WS.</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/223058
-
dc.description.abstract
With the availability of music streaming platforms, listening behavior has seen fundamental changes in the past two decades, going from mere consumption of and recommendation within personal collections to an exploration of massive catalogs. As part of this trend, collaborative filtering algorithms that exploit consumption data, user feedback, and, most recently, the sequential order of music consumption, have become indispensable.
In prior work, it has been shown that the incorporation of negative feedback (skipped track information) via contrastive learning can be applied to and improve existing sequential recommendation models. In this work, we extend previous findings by investigating two notable aspects of music listening data in detail. First, we analyze popular public datasets used in music recommender systems research (LFM-1k, LFM-2B, and the Music Streaming Sessions Dataset) with respect to the evolution of consumption activity and track skipping behavior, and show strongly deviating patterns based on data creation context. Second, focusing on LFM-2B, we further study the impact of data and skipping information availability on sequential and non-sequential recommendation algorithms over the different years available in the data set. We observe deviating model performance using time-based subsets of LFM-2B compared to experiments on the entire dataset. In conclusion, we argue for more careful discernment and understanding of listening tasks and user intents leading to creating datasets, as well as explicitly modeling different types of interactions.
en
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.language.iso
en
-
dc.subject
Sequential Recommendation
en
dc.subject
Music Recommendation
en
dc.subject
Contrastive Learning
en
dc.title
An Analysis of the Evolution of Music Listening Data and the Need for Task Discernment
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.editoraffiliation
Pandora/SiriusXM, Barcelona, Spain
-
dc.contributor.editoraffiliation
Department of Computer, Control and Management Engineering - Sapienza – Università di Roma (Rome, IT)
-
dc.contributor.editoraffiliation
Focus area "InterMediation - Music - Effect - Analysis" - Wissenschaft & Kunst (Salzburg, AT)
-
dc.relation.issn
1613-0073
-
dc.relation.grantno
DCDH-001
-
dc.rights.holder
The authors.
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 3rd Music Recommender Systems Workshop (MuRS 2025) co-located with the 19th ACM Conference on Recommender Systems (RecSys 2025)
-
tuw.container.volume
4045
-
tuw.peerreviewed
true
-
tuw.relation.publisher
CEUR-WS
-
tuw.project.title
Vienna Doctoral College on Digital Humanism
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publication.orgunit
E056-27 - Fachbereich Digital Humanism
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0000-0003-4344-2696
-
tuw.author.orcid
0009-0008-7838-9614
-
tuw.author.orcid
0000-0003-3906-1292
-
tuw.editor.orcid
0000-0003-1236-2503
-
tuw.editor.orcid
0000-0003-0218-5187
-
tuw.editor.orcid
0000-0001-5724-1137
-
tuw.event.name
MuRS 2025: Music Recommender Systems Workshop 2025
en
tuw.event.startdate
22-09-2025
-
tuw.event.enddate
22-09-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Prag
-
tuw.event.country
CZ
-
tuw.event.presenter
Shashaani, Shahrzad
-
tuw.event.track
Single Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.grantfulltext
restricted
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194 - Institut für Information Systems Engineering
-
crisitem.author.orcid
0000-0003-4344-2696
-
crisitem.author.orcid
0009-0008-7838-9614
-
crisitem.author.orcid
0000-0003-3906-1292
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E180 - Fakultät für Informatik
-
crisitem.project.funder
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds