<div class="csl-bib-body">
<div class="csl-entry">Arya, V., De Gennaro, D., & Kubin, A. (2026). The asymptotic of the Mullins-Sekerka and the area-preserving curvature flow in the planar flat torus. <i>Journal of Differential Equations</i>, <i>451</i>, Article 113755. https://doi.org/10.1016/j.jde.2025.113755</div>
</div>
-
dc.identifier.issn
0022-0396
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/223059
-
dc.description.abstract
We study the asymptotic behavior of flat flow solutions to the periodic and planar two-phase Mullins-Sekerka flow and area-preserving curvature flow. We show that flat flows converge to either a finite union of equally sized disjoint disks or to a finite union of disjoint strips or to the complement of these configurations exponentially fast. A key ingredient in our approach is the derivation of a sharp quantitative Alexandrov inequality for periodic smooth sets.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
-
dc.relation.ispartof
Journal of Differential Equations
-
dc.subject
Geometric flow
en
dc.subject
Asymptotic behavior
en
dc.subject
Variational methods
en
dc.title
The asymptotic of the Mullins-Sekerka and the area-preserving curvature flow in the planar flat torus
Quantum Optical Binding of Levitated Nanoparticles QBind Application for the Principal Investigator Project Submitted to the Austrian Science Fund (FWF) by Dr. Uros