<div class="csl-bib-body">
<div class="csl-entry">Li, Y., Zhou, Z., Sedlak, B., & Dustdar, S. (2025). MGG-AD: Multi-Granularity Graph-Based Anomaly Detection in IoT Systems. In <i>2025 IEEE International Conference on Web Services (ICWS)</i> (pp. 732–741). IEEE. https://doi.org/10.1109/ICWS67624.2025.00096</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/223086
-
dc.description.abstract
Internet of Things (IoT) systems gained significant attention for monitoring and optimizing processes. To ensure realtime detections with low latency, IoT applications often monitor individual components through a microservice network, deployed close to IoT devices. Existing methods for multivariate time series anomaly detection typically construct one global graph for identifying deviations in predicted or reconstructed attribute features. However, consider an active node that suddenly experiences a sharp drop in connections or established unexpected links; these structural anomalies would be totally overlooked. To address these limitations, this paper proposes Multi-Granularity Graph Anomaly Detection (MGG-AD), a novel approach that captures both attribute and topological dependencies within IoT systems. Specifically, we construct a multi-granularity dependency graph from a global graph and multiple local subgraphs that define geographical correlations among IoT devices. First, at the attribute-level, we detect contextual deviations by reconstructing feature representations and contrasting attributes across local subgraphs. Second, at the topological-level, we identify abnormal structural variations by comparing local subgraphs with the global graph-called contrastive learning. We evaluated MGGAD on two publicly available datasets and against state-of-the-art methods-we found that our solution provides higher detection accuracy and robustness, underlining its suitability for dynamic IoT systems.
en
dc.language.iso
en
-
dc.subject
anomaly detection
en
dc.subject
internet of things
en
dc.subject
topology analysis
en
dc.subject
contrastive learning
en
dc.title
MGG-AD: Multi-Granularity Graph-Based Anomaly Detection in IoT Systems
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
China University of Geosciences (Beijing), China
-
dc.contributor.affiliation
China University of Geosciences (Beijing), China
-
dc.relation.isbn
979-8-3315-5563-4
-
dc.relation.doi
10.1109/ICWS67624.2025
-
dc.relation.issn
2836-3876
-
dc.description.startpage
732
-
dc.description.endpage
741
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2836-3868
-
tuw.booktitle
2025 IEEE International Conference on Web Services (ICWS)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-02 - Forschungsbereich Distributed Systems
-
tuw.publisher.doi
10.1109/ICWS67624.2025.00096
-
dc.description.numberOfPages
10
-
tuw.author.orcid
0000-0002-4690-8757
-
tuw.author.orcid
0000-0002-3195-2253
-
tuw.author.orcid
0009-0001-2365-8265
-
tuw.author.orcid
0000-0001-6872-8821
-
tuw.event.name
IEEE International Conference on Web Services (ICWS 2025)
en
tuw.event.startdate
07-07-2025
-
tuw.event.enddate
12-07-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Helsinki
-
tuw.event.country
FI
-
tuw.event.presenter
Li, Yi
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
China University of Geosciences (Beijing), China
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.orcid
0000-0002-3195-2253
-
crisitem.author.orcid
0009-0001-2365-8265
-
crisitem.author.orcid
0000-0001-6872-8821
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering