<div class="csl-bib-body">
<div class="csl-entry">Lin, T., & Sablatnig, R. (2025). Enhancing Historical Image Retrieval with Compositional Cues. In B. Nessler, J. Piater, & P. M. Roth (Eds.), <i>Austrian Symposium on AI, Robotics, and Vision (AIRoV) : Proceedings : March 26–27, 2024, University of Innbruck</i> (pp. 169–178). innsbruck university press. http://hdl.handle.net/20.500.12708/223141</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/223141
-
dc.description.abstract
In analyzing vast amounts of digitally stored historical image data, existing
content-based retrieval methods often overlook significant non-semantic information, limiting their effectiveness for flexible exploration across varied themes.
To broaden the applicability of image retrieval methods for diverse purposes and
uncover more general patterns, we innovatively introduce a crucial factor from
computational aesthetics, namely image composition, into this topic. By explicitly integrating composition-related information extracted by CNN into the
designed retrieval model, our method considers both the image’s composition rules
and semantic information. Qualitative and quantitative experiments demonstrate
that the image retrieval network guided by composition information outperforms
those relying solely on content information, facilitating the identification of images in databases closer to the target image in human perception.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
Historical image retrival
en
dc.subject
Image Composition
en
dc.subject
Human Perception Alignment
en
dc.subject
Digital Humanities
en
dc.subject
Semantic-Aesthetic Search
en
dc.subject
Archival Exploration
en
dc.title
Enhancing Historical Image Retrieval with Compositional Cues
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
978-3-99106-150-2
-
dc.relation.doi
10.15203/99106-150-2
-
dc.description.startpage
169
-
dc.description.endpage
178
-
dc.relation.grantno
DFH 37-N
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Austrian Symposium on AI, Robotics, and Vision (AIRoV) : Proceedings : March 26–27, 2024, University of Innbruck
-
tuw.peerreviewed
true
-
tuw.relation.publisher
innsbruck university press
-
tuw.project.title
Visuelle Analytik und Computer Vision treffen auf kulturelles Erbe
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E193-01 - Forschungsbereich Computer Vision
-
tuw.publication.orgunit
E056-12 - Fachbereich ENROL DP
-
tuw.publication.orgunit
E056-18 - Fachbereich Visual Analytics and Computer Vision Meet Cultural Heritage
-
dc.description.numberOfPages
10
-
tuw.author.orcid
0009-0008-9825-686X
-
tuw.author.orcid
0000-0003-4195-1593
-
tuw.event.name
Austrian Symposium on AI, Robotics, and Vision (AIRoV), 2024
en
tuw.event.startdate
26-03-2024
-
tuw.event.enddate
27-03-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Innsbruck
-
tuw.event.country
AT
-
tuw.event.presenter
Lin, Tingyu
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.grantfulltext
restricted
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.dept
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.orcid
0009-0008-9825-686X
-
crisitem.author.orcid
0000-0003-4195-1593
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology