<div class="csl-bib-body">
<div class="csl-entry">Lasy, I., Knees, P., & Woltran, S. (2025). <i>Understanding Verbatim Memorization in LLMs Through Circuit Discovery</i>. arXiv. https://doi.org/10.48550/ARXIV.2506.21588</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/223373
-
dc.description.abstract
Underlying mechanisms of memorization in LLMs -- the verbatim reproduction of training data -- remain poorly understood. What exact part of the network decides to retrieve a token that we would consider as start of memorization sequence? How exactly is the models' behaviour different when producing memorized sentence vs non-memorized? In this work we approach these questions from mechanistic interpretability standpoint by utilizing transformer circuits -- the minimal computational subgraphs that perform specific functions within the model. Through carefully constructed contrastive datasets, we identify points where model generation diverges from memorized content and isolate the specific circuits responsible for two distinct aspects of memorization. We find that circuits that initiate memorization can also maintain it once started, while circuits that only maintain memorization cannot trigger its initiation. Intriguingly, memorization prevention mechanisms transfer robustly across different text domains, while memorization induction appears more context-dependent.
en
dc.language.iso
en
-
dc.subject
Large Language Models (LLMs)
en
dc.subject
Verbatim Memorizatio
en
dc.subject
Discovery
en
dc.title
Understanding Verbatim Memorization in LLMs Through Circuit Discovery
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2506.21588
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publication.orgunit
E056-13 - Fachbereich LogiCS
-
tuw.publisher.doi
10.48550/ARXIV.2506.21588
-
dc.description.numberOfPages
12
-
tuw.author.orcid
0000-0003-3906-1292
-
tuw.author.orcid
0000-0003-1594-8972
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.fulltext
no Fulltext
-
item.openairetype
preprint
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E194 - Institut für Information Systems Engineering
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence