<div class="csl-bib-body">
<div class="csl-entry">Beiser, A., Martinelli, F., Gerstner, W., & Brea, J. (2025). <i>Data Augmentation Techniques to Reverse-Engineer Neural Network Weights from Input-Output Queries</i>. arXiv. https://doi.org/10.48550/arXiv.2511.20312</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/223374
-
dc.description.abstract
Network weights can be reverse-engineered given enough informative samples of a network's input-output function. In a teacher-student setup, this translates into collecting a dataset of the teacher mapping -- querying the teacher -- and fitting a student to imitate such mapping. A sensible choice of queries is the dataset the teacher is trained on. But current methods fail when the teacher parameters are more numerous than the training data, because the student overfits to the queries instead of aligning its parameters to the teacher. In this work, we explore augmentation techniques to best sample the input-output mapping of a teacher network, with the goal of eliciting a rich set of representations from the teacher hidden layers. We discover that standard augmentations such as rotation, flipping, and adding noise, bring little to no improvement to the identification problem. We design new data augmentation techniques tailored to better sample the representational space of the network's hidden layers. With our augmentations we extend the state-of-the-art range of recoverable network sizes. To test their scalability, we show that we can recover networks of up to 100 times more parameters than training data-points.
en
dc.language.iso
en
-
dc.subject
Reverse Engineering
en
dc.subject
Data Augmentation
en
dc.subject
Parameter Recovery
en
dc.subject
Network Reconstruction
en
dc.subject
Interpretability
en
dc.subject
Teacher-Student
en
dc.title
Data Augmentation Techniques to Reverse-Engineer Neural Network Weights from Input-Output Queries
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2511.20312
-
dc.contributor.affiliation
École Polytechnique Fédérale de Lausanne, Switzerland
-
dc.contributor.affiliation
École Polytechnique Fédérale de Lausanne, Switzerland
-
dc.contributor.affiliation
École Polytechnique Fédérale de Lausanne, Switzerland
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publisher.doi
10.48550/arXiv.2511.20312
-
dc.description.numberOfPages
13
-
tuw.author.orcid
0009-0007-1514-0718
-
tuw.author.orcid
0000-0002-4344-2189
-
tuw.author.orcid
0000-0002-4636-0891
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.fulltext
no Fulltext
-
item.openairetype
preprint
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
École Polytechnique Fédérale de Lausanne, Switzerland
-
crisitem.author.dept
École Polytechnique Fédérale de Lausanne, Switzerland
-
crisitem.author.dept
École Polytechnique Fédérale de Lausanne, Switzerland