<div class="csl-bib-body">
<div class="csl-entry">Kniesel, H., Rapp, P., Hermosilla, P., & Ropinski, T. (2025). From Natural to Nanoscale: Training ControlNet on Scarce FIB-SEM Data for Augmenting Semantic Segmentation Data. In <i>Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops 2025</i> (pp. 5731–5740).</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/223672
-
dc.description.abstract
Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) is widely used for ultrastructural imaging, with segmentation of FIB-SEM stacks being essential for downstream quantification and biological analysis. However, manual annotation of these datasets is labor-intensive and time-consuming. Training semantic segmentation models offers a scalable alternative, but FIB-SEM datasets are typically small and exhibit low variance as the imaging process involves slicing and capturing individual sample sections. This poses a significant challenge for model training. Data augmentation via generative models has emerged to address limited data, with diffusion models showing state-of-the-art synthesis capabilities. Yet, their dependence on large natural image datasets restricts direct application to FIB-SEM data. In this work, we explore fine-tuning ControlNet - a conditional diffusion model extension - on small FIB-SEM datasets to produce realistic, label-consistent synthetic images for segmentation. Despite relying on a diffusion backbone trained exclusively on natural images, we show that fine-tuning ControlNet with domain-specific structural cues enables effective data augmentation, leading to an impressive downstream mIoU improvement of up to +15.4. We compare ControlNet augmentations against standard augmentation techniques in respect to generation time as well as downstream task performance. We additionally explore different dataset sizes, and provide insights into the feasibility of applying large-scale generative models in data-scarce, low-variance scientific imaging domains like FIB-SEM.
en
dc.language.iso
en
-
dc.subject
Focused Ion Beam Scanning Electron Microscopy
en
dc.subject
ControlNet
en
dc.subject
Diffusion Models
en
dc.subject
Data Augmentation
en
dc.subject
Semantic Segmentation
en
dc.subject
Synthetic Data Generation
en
dc.subject
Domain Adaptation
en
dc.subject
Biological Image Analysis
en
dc.title
From Natural to Nanoscale: Training ControlNet on Scarce FIB-SEM Data for Augmenting Semantic Segmentation Data
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Universität Ulm, Germany
-
dc.contributor.affiliation
Universität Ulm, Germany
-
dc.contributor.affiliation
Universität Ulm, Germany
-
dc.description.startpage
5731
-
dc.description.endpage
5740
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops 2025
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E193-01 - Forschungsbereich Computer Vision
-
dc.description.numberOfPages
10
-
tuw.author.orcid
0000-0001-5898-8152
-
tuw.author.orcid
0009-0004-5192-2029
-
tuw.author.orcid
0000-0002-7857-5512
-
tuw.event.name
International Conference on Computer Vision (ICCV) Workshops
en
tuw.event.startdate
19-10-2025
-
tuw.event.enddate
23-10-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Honolulu
-
tuw.event.country
US
-
tuw.event.presenter
Kniesel, Hannah
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
crisitem.author.dept
Universität Ulm
-
crisitem.author.dept
Universität Ulm, Germany
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.dept
Universität Ulm
-
crisitem.author.orcid
0000-0001-5898-8152
-
crisitem.author.orcid
0000-0002-7857-5512
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology