<div class="csl-bib-body">
<div class="csl-entry">Lackinger, A., Morichetta, A., Frangoudis, P., & Dustdar, S. (2025). <i>BIPPO: Budget-Aware Independent PPO for Energy-Efficient Federated Learning Services</i>. arXiv. https://doi.org/10.48550/arXiv.2511.08142</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/223676
-
dc.description.abstract
Federated Learning (FL) is a promising machine learning solution in large-scale IoT systems, guaranteeing load distribution and privacy. However, FL does not natively consider infrastructure efficiency, a critical concern for systems operating in resource-constrained environments. Several Reinforcement Learning (RL) based solutions offer improved client selection for FL; however, they do not consider infrastructure challenges, such as resource limitations and device churn. Furthermore, the training of RL methods is often not designed for practical application, as these approaches frequently do not consider generalizability and are not optimized for energy efficiency. To fill this gap, we propose BIPPO (Budget-aware Independent Proximal Policy Optimization), which is an energy-efficient multi-agent RL solution that improves performance. We evaluate BIPPO on two image classification tasks run in a highly budget-constrained setting, with FL clients training on non-IID data, a challenging context for vanilla FL. The improved sampler of BIPPO enables it to increase the mean accuracy compared to non-RL mechanisms, traditional PPO, and IPPO. In addition, BIPPO only consumes a negligible proportion of the budget, which stays consistent even if the number of clients increases. Overall, BIPPO delivers a performant, stable, scalable, and sustainable solution for client selection in IoT-FL.
en
dc.description.sponsorship
European Commission
-
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.subject
Federated Learning
en
dc.subject
PPO
en
dc.subject
Edge Computing
en
dc.subject
AIoT
en
dc.subject
Sustainable ML
en
dc.subject
Green ICT
en
dc.title
BIPPO: Budget-Aware Independent PPO for Energy-Efficient Federated Learning Services
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2511.08142
-
dc.relation.grantno
101079214
-
dc.relation.grantno
101135576
-
tuw.project.title
Twinning action for spreading excellence in Artificial Intelligence of Things
-
tuw.project.title
Intent-based data operation in the computing continuum
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.linking
https://github.com/Lacki28/BIPPO/
-
tuw.linking
https://github.com/zhijian-liu/torchprofile
-
tuw.publication.orgunit
E194-02 - Forschungsbereich Distributed Systems
-
tuw.publisher.doi
10.48550/arXiv.2511.08142
-
dc.description.numberOfPages
13
-
tuw.author.orcid
0009-0006-2908-0528
-
tuw.author.orcid
0000-0003-3765-3067
-
tuw.author.orcid
0000-0001-6901-7714
-
tuw.author.orcid
0000-0001-6872-8821
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.grantfulltext
restricted
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.fulltext
no Fulltext
-
item.openairetype
preprint
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.orcid
0009-0006-2908-0528
-
crisitem.author.orcid
0000-0003-3765-3067
-
crisitem.author.orcid
0000-0001-6901-7714
-
crisitem.author.orcid
0000-0001-6872-8821
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering