<div class="csl-bib-body">
<div class="csl-entry">Mayerhofer, R., Morichetta, A., Furutanpey, A., & Dustdar, S. (2025). HPAQT: Adaptive and Interpretable High-level SLO-aware Autoscaling with Reinforcement Learning. In <i>UCC ’25: Proceedings of the 18th IEEE/ACM International Conference on Utility and Cloud Computing</i>. 18th IEEE/ACM International Conference on Utility and Cloud Computing (UCC 2025), Nantes, France. ACM. https://doi.org/10.1145/3773274.3774274</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/223680
-
dc.description.abstract
Modern distributed applications rely on virtualized infrastructures to elastically meet their performance requirements. In this setting, autoscaling enables elastic adaptations at runtime. While allowing for the overcoming of the burden of adjusting the provisioned resources, autoscaling shifts the problem to the definition of an accurate and appropriate threshold, for example, a certain CPU usage, which is a difficult challenge to achieve. Furthermore, defining a priori a fixed value clashes with the dynamicity of modern applications and infrastructure, leading to inflexibility that can affect the quality of service over time. Finally, most autoscaling techniques rely on low, resource-level metrics, which, in complex scenarios, are difficult to gauge. In our paper, we propose HPAQT, a lightweight, stable, and reproducible RL mechanism that self-calibrates the autoscaling threshold to enforce composite, high-level objectives rather than fixed low-level metrics. HPAQT yields an easily interpretable, deployable, and effective policy. In experiments, HPAQT achieves 10× fewer violations than the reference Q-Threshold and beats the standard Kubernetes HPA, with less than 0.5% total violations in over 12 hours, thus demonstrating practical gains.
en
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.subject
reinforcement learning
en
dc.subject
auto-scaling
en
dc.subject
Q-Threshold
en
dc.subject
high-level SLO
en
dc.subject
workload
en
dc.subject
self-adaptive systems
en
dc.title
HPAQT: Adaptive and Interpretable High-level SLO-aware Autoscaling with Reinforcement Learning
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
979-8-4007-2285-1
-
dc.relation.grantno
101135576
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
UCC '25: Proceedings of the 18th IEEE/ACM International Conference on Utility and Cloud Computing
-
tuw.peerreviewed
true
-
tuw.relation.publisher
ACM
-
tuw.relation.publisherplace
New York
-
tuw.project.title
Intent-based data operation in the computing continuum
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-02 - Forschungsbereich Distributed Systems
-
tuw.publisher.doi
10.1145/3773274.3774274
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0002-6483-2821
-
tuw.author.orcid
0000-0003-3765-3067
-
tuw.author.orcid
0000-0001-5621-7899
-
tuw.author.orcid
0000-0001-6872-8821
-
tuw.event.name
18th IEEE/ACM International Conference on Utility and Cloud Computing (UCC 2025)
en
tuw.event.startdate
01-12-2025
-
tuw.event.enddate
04-12-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Nantes
-
tuw.event.country
FR
-
tuw.event.presenter
Morichetta, Andrea
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.orcid
0000-0002-6483-2821
-
crisitem.author.orcid
0000-0003-3765-3067
-
crisitem.author.orcid
0000-0001-5621-7899
-
crisitem.author.orcid
0000-0001-6872-8821
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering