<div class="csl-bib-body">
<div class="csl-entry">Raith, P. A., Furutanpey, A., Lukić, N., Thurimella, V., & Nastic, S. (2025). EdgeCloudForge: Simulation-Driven Synthetic Dataset Generation For Proactive Serverless Edge Function Autoscaling. In <i>2025 IEEE International Conference on Cloud Engineering (IC2E)</i> (pp. 126–135). IEEE. https://doi.org/10.1109/IC2E65552.2025.00028</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/223684
-
dc.description.abstract
Serverless edge computing promises autonomous function management across the heterogeneous edge-cloud continuum. Specifically, autoscaling of functions increases resource efficiency by creating and destroying instances on demand. However, reactive function instance creation can cause high end-to-end latency due to requests waiting for processing. Researchers and practitioners use proactive autoscaling mechanisms to overcome this by predicting the required number of function instances in advance. Proactive approaches pose challenges because prediction models must be fine-tuned for new environments and updated over time. Therefore, we propose a simulation-driven framework, EdgeCloudForge, that generates datasets to train prediction models for autoscaling in edge-cloud environments ahead of their deployment, thus preparing them in advance for new environments. We introduce the concept of Edge-Cloud Domain Space to describe different infrastructure attributes. EdgeCloudForge uses a two-step method based on initial sampling and Bayesian optimization to navigate this domain space. Simulation results show that our approach can reduce SLO violations by up to 79% across different request patterns compared to the reactive approach and is able to outperform approaches from related work by up to 91%. EdgeCloudForge also shows the capability of training models that can be used across different infrastructures.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.description.sponsorship
Internet Privatstiftung Austria
-
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.subject
Proactive Autoscaling
en
dc.subject
Serverless Edge Computing
en
dc.subject
Synthetic Dataset Generation
en
dc.title
EdgeCloudForge: Simulation-Driven Synthetic Dataset Generation For Proactive Serverless Edge Function Autoscaling
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Georgia Institute of Technology, United States of America (the)
-
dc.relation.isbn
979-8-3315-3465-3
-
dc.relation.doi
10.1109/IC2E65552.2025
-
dc.relation.issn
2373-3845
-
dc.description.startpage
126
-
dc.description.endpage
135
-
dc.relation.grantno
903884
-
dc.relation.grantno
7442
-
dc.relation.grantno
101192912
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2694-0825
-
tuw.booktitle
2025 IEEE International Conference on Cloud Engineering (IC2E)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.project.title
Rapid Recovery and Control of Urban Traffic During Accident Situations Based on Artificial Intelligence
-
tuw.project.title
LEOTrek
-
tuw.project.title
NexaSphere: NexGen 3D Networks Spin Harmonies across 6G, AI, and unified TN/NTN
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-02 - Forschungsbereich Distributed Systems
-
tuw.publisher.doi
10.1109/IC2E65552.2025.00028
-
dc.description.numberOfPages
10
-
tuw.author.orcid
0000-0003-3293-9437
-
tuw.author.orcid
0000-0001-5621-7899
-
tuw.author.orcid
0000-0003-0410-6315
-
tuw.event.name
13th IEEE International Conference on Cloud Engineering (IC2E 2025)
en
tuw.event.startdate
23-09-2025
-
tuw.event.enddate
26-09-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Rennes
-
tuw.event.country
FR
-
tuw.event.presenter
Raith, Philipp Alexander
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
Georgia Institute of Technology, United States of America (the)
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.orcid
0000-0003-3293-9437
-
crisitem.author.orcid
0000-0001-5621-7899
-
crisitem.author.orcid
0000-0003-0410-6315
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH