<div class="csl-bib-body">
<div class="csl-entry">Zhou, T., Neumann, S., Garimella, K., & Gionis, A. (2025). Calibrated and Diverse News Coverage. In <i>CIKM ’25: Proceedings of the 34th ACM International Conference on Information and Knowledge Management</i> (pp. 4509–4518). Association for Computing Machinery. https://doi.org/10.1145/3746252.3761149</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/223701
-
dc.description.abstract
In recent years, there has been a debate about whether automated news aggregators, like Google News, lead readers to content that reinforces their existing beliefs and restricts their exposure to a biased subset of perspectives. To avoid bias, it has become common practice that news aggregators provide articles based on source diversity: for each story, they pick articles from news sources with different political leanings. In this paper, we ask whether this practice is sufficient. In particular, we study how well the diversity of viewpoints, in particular with respect to entities, is covered by articles picked using plain source diversity. We analyze a dataset fetched from Google News and find that, even though the top articles exhibit some diversity with respect to the leanings of the news outlets, many possible viewpoints towards the entities are missing. Based on this observation we design novel methods for selecting a small set of articles that cover all possible viewpoints; to ensure that our selections are useful we show how to incorporate the user preferences into our model. Our experiments on four real-world datasets show that our algorithms cover significantly more different viewpoints than previous baselines.
en
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.language.iso
en
-
dc.subject
calibration
en
dc.subject
data summarization
en
dc.subject
diversity
en
dc.subject
news coverage
en
dc.title
Calibrated and Diverse News Coverage
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
979-8-4007-2040-6
-
dc.description.startpage
4509
-
dc.description.endpage
4518
-
dc.relation.grantno
VRG23-013
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
CIKM '25: Proceedings of the 34th ACM International Conference on Information and Knowledge Management
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Association for Computing Machinery
-
tuw.relation.publisherplace
New York
-
tuw.project.title
Towards Trustworthy Recommendation Systems for Online Social Networks
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-06 - Forschungsbereich Machine Learning
-
tuw.publisher.doi
10.1145/3746252.3761149
-
dc.description.numberOfPages
10
-
tuw.author.orcid
0000-0001-9566-8035
-
tuw.author.orcid
0000-0002-3981-1500
-
tuw.author.orcid
0000-0002-0173-5557
-
tuw.author.orcid
0000-0002-5211-112X
-
tuw.event.name
The 34th ACM International Conference on Information and Knowledge Management
en
tuw.event.startdate
10-11-2025
-
tuw.event.enddate
14-11-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
US
-
tuw.event.presenter
Zhou, Tianyi
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.dept
KTH Royal Institute of Technology (Stockholm, SE)
-
crisitem.author.orcid
0000-0001-9566-8035
-
crisitem.author.orcid
0000-0002-3981-1500
-
crisitem.author.orcid
0000-0002-0173-5557
-
crisitem.author.orcid
0000-0002-5211-112X
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.project.funder
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds