<div class="csl-bib-body">
<div class="csl-entry">Haug, M., Stippel, C., Pscherer, L., Schwendinger, B., Hoch, R., Gaydarov, A., Schlund, S., & Sauter, T. (2025). Vision-Based Human Awareness Estimation for Enhanced Safety and Efficiency of AMRs in Industrial Warehouses. In <i>Proceedings of the 30th IEEE International Conference on Emerging Technologies and Factory Automation</i>. 30th IEEE International Conference on. Emerging Technologies and Factory Automation, Porto, Portugal. https://doi.org/10.1109/ETFA65518.2025.11205698</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/223720
-
dc.description.abstract
Ensuring human safety is of paramount importance in warehouse environments that feature mixed traffic of human workers and autonomous mobile robots (AMRs). Current approaches often treat humans as generic dynamic obstacles, leading to conservative AMR behaviors like slowing down or detouring, even when workers are fully aware and capable of safely sharing space. This paper presents a real-time vision-based method to estimate human awareness of an AMR using a single RGB camera. We integrate state-of-the-art 3D human pose lifting with head orientation estimation to ascertain a human's position relative to the AMR and their viewing cone, thereby determining if the human is aware of the AMR. The entire pipeline is validated using synthetically generated data within NVIDIA Isaac Sim, a robust physics-accurate robotics simulation environment. Experimental results confirm that our system reliably detects human positions and their attention in real time, enabling AMRs to safely adapt their motion based on human awareness. This enhancement is crucial for improving both safety and operational efficiency in industrial and factory automation settings.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.subject
autonomous mobile robots
en
dc.subject
computer vision
en
dc.subject
human-robot interaction
en
dc.subject
robot simulation
en
dc.title
Vision-Based Human Awareness Estimation for Enhanced Safety and Efficiency of AMRs in Industrial Warehouses
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Fraunhofer Austria (Vienna, AT)
-
dc.relation.isbn
9798331553838
-
dc.relation.grantno
FO999922723
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 30th IEEE International Conference on Emerging Technologies and Factory Automation
-
tuw.peerreviewed
true
-
tuw.project.title
Konzipierung einer vollautomatisierten Ent- und Verladung mittels FTS für Außenbereich und Kommissionierung
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E193-01 - Forschungsbereich Computer Vision
-
tuw.publication.orgunit
E384-01 - Forschungsbereich Software-intensive Systems