<div class="csl-bib-body">
<div class="csl-entry">Farsang, M., & Grosu, R. (2025). Scaling Up Liquid-Resistance Liquid-Capacitance Networks for Efficient Sequence Modeling. In <i>Advances in Neural Information Processing Systems 39: Annual Conference on Neural Information Processing Systems 2025, NeurIPS 2025, San Diego, US, December 2 - 7, 2025</i>. NeurIPS 2025, United States of America (the).</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/223745
-
dc.description.abstract
We present LrcSSM, a non-linear recurrent model that processes long sequences as fast as today’s linear state-space layers. By forcing its Jacobian matrix to be diagonal, the full sequence can be solved in parallel, giving O(T D) time and memory and only O(logT ) sequential depth, for input-sequence length T and a state dimension D. Moreover, LrcSSM offers a formal gradient-stability guarantee that other input-varying systems such as Liquid-S4 and Mamba do not provide. Importantly, the diagonal Jacobian structure of our model results in no performance loss compared to the original model with dense Jacobian, and the approach can be generalized to other non-linear recurrent models, demonstrating broader applicability. On a suite of long-range forecasting tasks, we demonstrate that LrcSSM outperforms Transformers, LRU, S5, and Mamba.
en
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.subject
Non-linear recurrent model
en
dc.subject
Diagonal Jacobian
en
dc.subject
Parallel sequence processing
en
dc.subject
Gradient stability
en
dc.subject
Long-sequence modeling
en
dc.subject
State-space models
en
dc.subject
Recurrent neural networks
en
dc.title
Scaling Up Liquid-Resistance Liquid-Capacitance Networks for Efficient Sequence Modeling
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.grantno
101034277
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Advances in Neural Information Processing Systems 39: Annual Conference on Neural Information Processing Systems 2025, NeurIPS 2025, San Diego, US, December 2 - 7, 2025
-
tuw.peerreviewed
true
-
tuw.project.title
Technik für Biowissenschaften Doktoratsstudium
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.linking
https://github.com/MoniFarsang/LrcSSM
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publication.orgunit
E056-17 - Fachbereich Trustworthy Autonomous Cyber-Physical Systems
-
tuw.author.orcid
0009-0002-9305-6507
-
tuw.author.orcid
0000-0001-5715-2142
-
tuw.event.name
NeurIPS 2025
en
tuw.event.startdate
02-12-2025
-
tuw.event.enddate
07-12-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
US
-
tuw.event.presenter
Farsang, Monika
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems