<div class="csl-bib-body">
<div class="csl-entry">Wang, Y., Donta, P. K., Lovén, L., Dustdar, S., & Hossein Motlagh, N. (2025). Lightweight LSTM-Based Adaptive Kafka Tuning for Predictive IoT Data Streams. In <i>Proceedings of the IEEE International Conference on Quantum Software (IEEE QSW 2025)</i> (pp. 257–262). IEEE. https://doi.org/10.1109/QSW67625.2025.00038</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/223783
-
dc.description.abstract
The Internet of Things (IoT) is a fundamental element of the computing continuum, characterized by data streams that exhibit predictable patterns primarily driven by sensor configurations and deployment strategies. On the other hand, Apache Kafka, renowned for its high-throughput and faulttolerant data streaming capabilities, is well-suited for managing IoT data streams. However, static Kafka configurations often result in inefficiencies such as suboptimal batching, increased consumer lag, and underutilization of system resources. To address these challenges, we propose a dynamic reconfiguration approach that leverages short-term historical data to forecast message rates and adjust Kafka parameters in real time using a lightweight Long Short-Term Memory (LSTM) model. This adaptive approach optimizes the configuration of Kafka producers and consumers for IoT environments, achieving a prediction accuracy of 91.42% with minimal computational overhead. Experimental evaluations demonstrate substantial improvements in consumer lag reduction, throughput stability, and CPU utilization across heterogeneous IoT workloads, with the system requiring only brief observation periods to effectively tune performance.
en
dc.language.iso
en
-
dc.subject
Data Streams
en
dc.subject
IoT
en
dc.subject
Kafka adaptive tuning
en
dc.subject
Publish/subscribe systems
en
dc.subject
quality of service
en
dc.title
Lightweight LSTM-Based Adaptive Kafka Tuning for Predictive IoT Data Streams
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
University of Helsinki, Finland
-
dc.contributor.affiliation
Stockholm University, Sweden
-
dc.contributor.affiliation
University of Oulu, Finland
-
dc.contributor.affiliation
University of Helsinki, Finland
-
dc.relation.isbn
979-8-3315-6720-0
-
dc.relation.doi
10.1109/QSW67625.2025
-
dc.description.startpage
257
-
dc.description.endpage
262
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the IEEE International Conference on Quantum Software (IEEE QSW 2025)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-02 - Forschungsbereich Distributed Systems
-
tuw.publisher.doi
10.1109/QSW67625.2025.00038
-
dc.description.numberOfPages
6
-
tuw.author.orcid
0000-0002-8233-6071
-
tuw.author.orcid
0000-0001-9475-4839
-
tuw.author.orcid
0000-0001-6872-8821
-
tuw.author.orcid
0000-0001-9923-9879
-
tuw.event.name
Fast Continuum 2025 Workshop at the 4th IEEE QSW 2025
en
tuw.event.startdate
07-07-2025
-
tuw.event.enddate
12-07-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Helsinki
-
tuw.event.country
FI
-
tuw.event.presenter
Wang, Yangyang
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
crisitem.author.dept
University of Helsinki, Finland
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
University of Helsinki, Finland
-
crisitem.author.orcid
0000-0002-8233-6071
-
crisitem.author.orcid
0000-0001-9475-4839
-
crisitem.author.orcid
0000-0001-6872-8821
-
crisitem.author.orcid
0000-0001-9923-9879
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering