<div class="csl-bib-body">
<div class="csl-entry">Musleh, M. (2026). <i>Guided Visual Analytics for Decision Making under Uncertainty</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2026.137814</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2026.137814
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/224040
-
dc.description
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
Visual Analytics (VA) has emerged from the need to optimize decision making by involving human reasoning in sense making. The development of VA has been facilitated by significant technological advances in modern computer graphics and data processing capabilities. Involving humans in the loop aims to address high-risk scenarios where artificial intelligence (AI) automated approaches are insufficient. One active area of research with VA is the development of methods that enable the user to make efficient and effective decisions under high uncertainty. Yet, the field of VA research has not fully understood how user attitude, namely trust and confidence, interplay in VA decision making under uncertainty. Properties of the user attitude play a crucial role in optimizing VA decision making, but they are challenging to externalize and evaluate. For instance, user confidence in their decision emerges as an important indicator of effectiveness when the correctness of the decision cannot be measured. In this dissertation, we explore the use of guidance techniques to address uncertainties in VA decision making, focusing on scenarios where the correctness of decisions cannot be definitively established. Throughout this work, we learned that a multidimensional guidance mechanism can address uncertainties more effectively when uncertainties are challenging to quantify and visualize, especially in the case of subjective uncertainty. However, evaluating the effectiveness of guidance approaches requires a more comprehensive analysis of the interplay between trust and confidence within the sense-making process. Using provenance networks and SNA metrics can provide a more reliable and comprehensive assessment of user confidence, indicating that such approaches can be employed to support co-adaptive guidance.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Visualization
en
dc.subject
Visual Analytics
en
dc.subject
Guidance
en
dc.subject
Trust
en
dc.subject
Confidence
en
dc.title
Guided Visual Analytics for Decision Making under Uncertainty
en
dc.title.alternative
Angeleitete visuelle Analytik für die Entscheidungsfindung bei Unsicherheit
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2026.137814
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Maath Musleh
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E193 - Institut für Visual Computing and Human-Centered Technology
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC17745765
-
dc.description.numberOfPages
185
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
tuw.author.orcid
0000-0002-6540-4829
-
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.advisor.orcid
0000-0003-2468-0664
-
item.cerifentitytype
Publications
-
item.openaccessfulltext
Open Access
-
item.languageiso639-1
en
-
item.fulltext
with Fulltext
-
item.openairetype
doctoral thesis
-
item.grantfulltext
open
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
crisitem.author.dept
E193-02 - Forschungsbereich Computer Graphics
-
crisitem.author.orcid
0000-0002-6540-4829
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology