<div class="csl-bib-body">
<div class="csl-entry">Steindl, B., Kolb, T. E., & Neidhardt, J. (2025). Beyond Demographics: Evaluating News Recommender Systems Fairness Through Behavioural Communities. In <i>UMAP Adjunct ’25: Adjunct Proceedings of the 33rd ACM Conference on User Modeling, Adaptation and Personalization</i> (pp. 13–17). Association for Computing Machinery. https://doi.org/10.1145/3708319.3733694</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/224469
-
dc.description.abstract
Fairness in recommender systems is often framed around demographic attributes. In this work, we explore a novel direction—evaluating fairness across latent behavioural communities derived from user interactions on a real-world news platform. Using graph-based community detection (Louvain and Infomap), we identify large user groups and examine how different network modelling choices affect fairness outcomes in both traditional and fairness-aware recommender systems. Experiments on an Austrian news dataset reveal that small changes in graph construction considerably impact community formation and recommendation quality. Notably, fairness-aware algorithms show only marginal improvements over standard approaches, underscoring the complexity of achieving equitable outcomes in real-world systems and raising important questions for future research.
en
dc.description.sponsorship
Christian Doppler Forschungsgesells
-
dc.language.iso
en
-
dc.subject
Beyond-Accuracy
en
dc.subject
Community Detection
en
dc.subject
Recommender Systems
en
dc.subject
User Communities
en
dc.title
Beyond Demographics: Evaluating News Recommender Systems Fairness Through Behavioural Communities
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
979-8-4007-1399-6
-
dc.relation.doi
10.1145/3708319
-
dc.description.startpage
13
-
dc.description.endpage
17
-
dc.relation.grantno
CDL Neidhardt
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
UMAP Adjunct '25: Adjunct Proceedings of the 33rd ACM Conference on User Modeling, Adaptation and Personalization
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Association for Computing Machinery
-
tuw.relation.publisherplace
New York
-
tuw.project.title
Christian Doppler Labor für Weiterentwicklung des State-of-the-Art von Recommender-Systemen in mehreren Domänen
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publisher.doi
10.1145/3708319.3733694
-
dc.description.numberOfPages
5
-
tuw.author.orcid
0000-0002-2340-0854
-
tuw.author.orcid
0000-0001-7184-1841
-
tuw.event.name
UMAP '25: 33rd ACM Conference on User Modeling, Adaptation and Personalization
en
tuw.event.startdate
16-06-2025
-
tuw.event.enddate
19-06-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
New York City
-
tuw.event.country
US
-
tuw.event.presenter
Kolb, Thomas Elmar
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E354-02 - Forschungsbereich Integrated Circuits
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0000-0002-2340-0854
-
crisitem.author.orcid
0000-0001-7184-1841
-
crisitem.author.parentorg
E354 - Electrodynamics, Microwave and Circuit Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering