<div class="csl-bib-body">
<div class="csl-entry">Ekaputra, F. J., Prock, A., & Elmar, K. (2025). Towards Supporting AI System Engineering with an Extended Boxology Notation. In E. Vakaj, N. Mihindukulasooriya, M. Gaur, & A. Khan (Eds.), <i>Proceedings of the 2nd International Workshop on Knowledge Graphs for Responsible AI (KG-STAR 2025) co-located with the 22nd Extended Semantic Web Conference (ESWC 2025)</i> (pp. 47–61).</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/224501
-
dc.description.abstract
As AI systems grow in complexity, understanding their structure and behaviour becomes increasingly challenging.
The boxology notation offers a dataflow-oriented abstraction to simplify AI system representation and help
address this challenge. In this work, we explore the potential of extending the boxology notation for AI system
engineering and introduce the Boxology Extended Annotation Model (BEAM). BEAM enhances boxology through
(i) incorporating auxiliary notations to capture engineering-relevant information and (ii) introducing an additional
perspective for AI system risk assessment and mitigation. Furthermore, we developed the BEAM ontology as a
machine-readable representation of BEAM to support further functionalities. We evaluated the BEAM approach
through (a) an initial feasibility evaluation with students in a classroom setting and (b) applying BEAM on use
cases as part of a research project. Positive feedback from both evaluations demonstrates its effectiveness in
supporting the AI system engineering process.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.relation.ispartofseries
CEUR Workshop Proceedings
-
dc.subject
AI System Engineering
en
dc.subject
AI System Representation
en
dc.subject
Boxology Notation
en
dc.title
Towards Supporting AI System Engineering with an Extended Boxology Notation
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Vienna University of Economics and Business, Austria
-
dc.contributor.affiliation
Vienna University of Economics and Business, Austria
-
dc.contributor.editoraffiliation
Birmingham City University, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.editoraffiliation
University of Maryland, Baltimore County, United States of America (the)
-
dc.contributor.editoraffiliation
Aalborg University, Denmark
-
dc.description.startpage
47
-
dc.description.endpage
61
-
dc.relation.grantno
FO999904624
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1613-0073
-
tuw.booktitle
Proceedings of the 2nd International Workshop on Knowledge Graphs for Responsible AI (KG-STAR 2025) co-located with the 22nd Extended Semantic Web Conference (ESWC 2025)
-
tuw.container.volume
4018
-
tuw.project.title
Fostering Austria's Innovative Strength and Research excellence in Artificial Intelligence
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
dc.description.numberOfPages
15
-
tuw.author.orcid
0000-0003-4569-2496
-
tuw.author.orcid
0009-0006-0653-6481
-
tuw.editor.orcid
0000-0002-0712-0959
-
tuw.editor.orcid
0000-0003-1707-4842
-
tuw.editor.orcid
0000-0002-5411-2230
-
tuw.editor.orcid
0000-0002-7312-6312
-
tuw.event.name
2nd International Workshop on Knowledge Graphs for Responsible AI (KG-STAR 2025)
en
tuw.event.startdate
01-06-2025
-
tuw.event.enddate
05-06-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Portoroz
-
tuw.event.country
SI
-
tuw.event.presenter
Ekaputra, Fajar Juang
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
Vienna University of Economics and Business, Austria
-
crisitem.author.dept
E194-01 - Forschungsbereich Software Engineering
-
crisitem.author.orcid
0000-0003-4569-2496
-
crisitem.author.orcid
0009-0006-0653-6481
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH