<div class="csl-bib-body">
<div class="csl-entry">Harviainen, J., Sommer, F., Sorge, M., & Szeider, S. (2025). Optimal Decision Tree Pruning Revisited: Algorithms and Complexity. In <i>Forty-second International Conference on Machine Learning : ICML 2025</i>. 42nd International Conference on Machine Learning (ICML 2025), Vancouver, Canada.</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/224545
-
dc.description.abstract
We present a comprehensive classical and parameterized complexity analysis of decision tree pruning operations, extending recent research on the complexity of learning small decision trees. Thereby, we offer new insights into the computational challenges of decision tree simplification, a crucial aspect of developing interpretable and efficient machine learning models. We focus on fundamental pruning operations of subtree replacement and raising, which are used in heuristics. Surprisingly, while optimal pruning can be performed in polynomial time for subtree replacement, the problem is NP-complete for subtree raising. Therefore, we identify parameters and combinations thereof that lead to fixed-parameter tractability or hardness, establishing a precise borderline between these complexity classes. For example, while subtree raising is hard for small domain size or number of features, it can be solved in time, where is the input size. We complement our theoretical findings with preliminary experimental results, demonstrating the practical implications of our analysis.
en
dc.language.iso
en
-
dc.subject
parameterized complexity
en
dc.subject
NP-hard problems
en
dc.subject
efficient algorithms
en
dc.subject
dynamic programming
en
dc.subject
subtree replacement
en
dc.subject
subtree raising
en
dc.title
Optimal Decision Tree Pruning Revisited: Algorithms and Complexity
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
University of Helsinki, Finland
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Forty-second International Conference on Machine Learning : ICML 2025
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publication.orgunit
E056-13 - Fachbereich LogiCS
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
dc.description.numberOfPages
27
-
tuw.author.orcid
0000-0002-4581-840X
-
tuw.author.orcid
0000-0001-8994-1656
-
tuw.event.name
42nd International Conference on Machine Learning (ICML 2025)
en
tuw.event.startdate
13-07-2025
-
tuw.event.enddate
19-07-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Vancouver
-
tuw.event.country
CA
-
tuw.event.presenter
Harviainen, Juha
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
crisitem.author.dept
University of Helsinki, Finland
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity