<div class="csl-bib-body">
<div class="csl-entry">El-Ebshihy, A., Ningtyas, A. M., Piroi, F., & Rauber, A. (2025). Benchmark Creation for Narrative Knowledge Delta Extraction Tasks: Can LLMs Help? In C. Hauff, C. Macdonald, D. Jannach, G. Kazai, F. M. Nardini, F. Pinelli, F. Silvestri, & N. Tonellotto (Eds.), <i>Advances in Information Retrieval : 47th European Conference on Information Retrieval, ECIR 2025, Lucca, Italy, April 6–10, 2025, Proceedings, Part III</i> (pp. 335–344). Springer. https://doi.org/10.1007/978-3-031-88714-7_32</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/224593
-
dc.description.abstract
Keeping up with state-of-the-art in science is increasingly difficult for researchers due to the current pace of publishing. Inspired by previous work, we address this challenge by formulating the task of Narrative Knowledge Delta (NKΔ) Extraction which focuses on identifying differences between pairs of scientific articles that tackle the same research problem, presented in a narrative form. We create two manually annotated ground truth datasets and one automatically generated dataset of NKΔ sentences. Using these datasets, we design and evaluate a NKΔ extraction approach from pairs of papers using four LLMs: GPT-4o, GPT-4o-mini, Llama3.1-8b, and Llama3.1-70b. We then apply a scientific fact-checking model to evaluate the LLMs’ NKΔ output using manually annotated data as ground truth claims. The results show a general improved performance in few-shot settings when examples from the automatically generated data are incorporated. However, our manual analysis reveals challenges and limitations in creating annotated data for evaluating NKΔ extraction by LLMs (Data, prompts, and code are available at: https://github.com/Alaa-Ebshihy/nkd_llm_2024).
en
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
Knowledge Delta
en
dc.subject
Literature Update
en
dc.subject
Scientific Information Extraction
en
dc.title
Benchmark Creation for Narrative Knowledge Delta Extraction Tasks: Can LLMs Help?
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.editoraffiliation
Spotify (Sweden), Sweden
-
dc.contributor.editoraffiliation
Mineralogical Society of the United Kingdom and Ireland, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.editoraffiliation
University of Klagenfurt, Austria
-
dc.contributor.editoraffiliation
Amazon (Germany), Germany
-
dc.contributor.editoraffiliation
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo", Italy
-
dc.contributor.editoraffiliation
IMT School for Advanced Studies Lucca, Italy
-
dc.contributor.editoraffiliation
Sapienza University of Rome, Italy
-
dc.contributor.editoraffiliation
University of Pisa, Italy
-
dc.relation.isbn
978-3-031-88714-7
-
dc.relation.issn
0302-9743
-
dc.description.startpage
335
-
dc.description.endpage
344
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1611-3349
-
tuw.booktitle
Advances in Information Retrieval : 47th European Conference on Information Retrieval, ECIR 2025, Lucca, Italy, April 6–10, 2025, Proceedings, Part III
-
tuw.container.volume
15574
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publication.orgunit
E058-06 - Fachbereich Zentrum für Forschungsdatenmanagement
-
tuw.publication.orgunit
E057-09 - Fachbereich ASC Research Center
-
tuw.publisher.doi
10.1007/978-3-031-88714-7_32
-
dc.description.numberOfPages
10
-
tuw.author.orcid
0000-0001-7584-6439
-
tuw.author.orcid
0000-0002-9272-6225
-
tuw.event.name
47th European Conference on Information Retrieval
en
tuw.event.startdate
06-04-2025
-
tuw.event.enddate
10-04-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Lucca
-
tuw.event.country
IT
-
tuw.event.presenter
El-Ebshihy, Alaa
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E058-06 - Fachbereich Zentrum für Forschungsdatenmanagement
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0000-0001-7584-6439
-
crisitem.author.orcid
0000-0002-9272-6225
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E058 - Forschungs-, Technologie- und Innovationssupport
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering