<div class="csl-bib-body">
<div class="csl-entry">Tiessler, M., Motger, Q., Piroi, F., & Baumann, A. (2025). EmoTracker—A New Framework for Modeling and Forecasting Diachronic Emotion Dynamics. In T. Arnold, M. Fantoli, & R. Ros (Eds.), <i>Computational Humanities Research 2025</i> (pp. 795–819). https://doi.org/10.63744/tdBQckiQA3FI</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/224603
-
dc.description.abstract
Existing computational approaches to diachronic semantics and emotion analysis typically study word meaning change and emotional evolution separately, limiting our understanding of how emotions evolve in proportion to the sense level. To bridge this gap, we propose EmoTracker, a novel framework that integrates diachronic sense modeling with Valence-Arousal-Dominance (VAD) emotion tracking to model and predict temporal emotion-sense trajectories. Our contribution is threefold. First, we develop a method for constructing temporal emotion datasets by integrating diachronic sense data with three different VAD lexicons. Second, we implement an LSTM architecture with attention mechanisms and momentum-based features to forecast emotional trajectories over time. Third, we provide interactive 3D visualizations to explore emotion dynamics over time, and 4D visualizations to capture the diachronic joint evolution of emotions and senses in the VAD space. Our evaluation shows that, among the selected lexicons, NRC-VAD is the most suitable for temporal modeling, though it also reveals the challenges in modeling dominance across lexicons. EmoTracker bridges diachronic semantics and emotion analysis, providing a comprehensive framework for computational humanities research.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Anthology of Computers and the Humanities
-
dc.subject
diachronic emotion analysis
en
dc.subject
LSTM forecasting
en
dc.subject
temporal sentiment analysis
en
dc.subject
VAD modeling
en
dc.subject
semantic change modeling
en
dc.title
EmoTracker—A New Framework for Modeling and Forecasting Diachronic Emotion Dynamics
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
TU Wien, Austria
-
dc.contributor.affiliation
Universitat Politècnica de Catalunya, Spain
-
dc.description.startpage
795
-
dc.description.endpage
819
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Computational Humanities Research 2025
-
tuw.container.volume
3
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publication.orgunit
E058-06 - Fachbereich Zentrum für Forschungsdatenmanagement
-
tuw.publisher.doi
10.63744/tdBQckiQA3FI
-
dc.description.numberOfPages
25
-
tuw.author.orcid
0009-0002-6535-9666
-
tuw.author.orcid
0000-0002-4896-7515
-
tuw.author.orcid
0000-0001-7584-6439
-
tuw.event.name
Sixth Conference on Computational Humanities Research (CHR 2025)
en
tuw.event.startdate
09-12-2025
-
tuw.event.enddate
12-12-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Luxemburg
-
tuw.event.country
LU
-
tuw.event.presenter
Tiessler, Max
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
crisitem.author.dept
TU Wien, Austria
-
crisitem.author.dept
Universitat Politècnica de Catalunya, Spain
-
crisitem.author.dept
E058-06 - Fachbereich Zentrum für Forschungsdatenmanagement
-
crisitem.author.orcid
0009-0002-6535-9666
-
crisitem.author.orcid
0000-0002-4896-7515
-
crisitem.author.orcid
0000-0001-7584-6439
-
crisitem.author.parentorg
E058 - Forschungs-, Technologie- und Innovationssupport